5 resultados para Road extraction
em Greenwich Academic Literature Archive - UK
Resumo:
Sound waves are propagating pressure fluctuations, which are typically several orders of magnitude smaller than the pressure variations in the flow field that account for flow acceleration. On the other hand, these fluctuations travel at the speed of sound in the medium, not as a transported fluid quantity. Due to the above two properties, the Reynolds averaged Navier–Stokes equations do not resolve the acoustic fluctuations. This paper discusses a defect correction method for this type of multi-scale problems in aeroacoustics. Numerical examples in one dimensional and two dimensional are used to illustrate the concept. Copyright (C) 2002 John Wiley & Sons, Ltd.
Resumo:
An aerodynamic sound source extraction from a general flow field is applied to a number of model problems and to a problem of engineering interest. The extraction technique is based on a variable decomposition, which results to an acoustic correction method, of each of the flow variables into a dominant flow component and a perturbation component. The dominant flow component is obtained with a general-purpose Computational Fluid Dynamics (CFD) code which uses a cell-centred finite volume method to solve the Reynolds-averaged Navier–Stokes equations. The perturbations are calculated from a set of acoustic perturbation equations with source terms extracted from unsteady CFD solutions at each time step via the use of a staggered dispersion-relation-preserving (DRP) finite-difference scheme. Numerical experiments include (1) propagation of a 1-D acoustic pulse without mean flow, (2) propagation of a 2-D acoustic pulse with/without mean flow, (3) reflection of an acoustic pulse from a flat plate with mean flow, and (4) flow-induced noise generated by the an unsteady laminar flow past a 2-D cavity. The computational results demonstrate the accuracy for model problems and illustrate the feasibility for more complex aeroacoustic problems of the source extraction technique.
Resumo:
This paper focuses on urban road pricing as a demand management policy that is often regarded as radical and generally unacceptable. Road pricing often gets delayed or abandoned due to low acceptability. This may be due to the fact that complex interactions and drivers of change affect road transport management and require cooperation within implementation networks. The implementation network is a group of people (referred to as partners and actors) who co-ordinate the introduction of policy tools. The drivers of change include any internal or external influences that have an effect on the time, place, or ‘shape’ of the policy measures being introduced. Demand management measures that focus on 'sustainable transport' usually address a limited set of objectives and are often implemented alone i.e. are not necessarily combined with other policy measures. When combined with other measures, it is not always clear whether the multiple interactions between policy tools and implementation networks have been sufficiently considered. Examples of ongoing implementation of policy package in the UK are the support of road pricing initiatives combined with public transport improvements by the Transport Innovation Fund. The objectives of the paper are twofold. First, we present a review of the UK urban road pricing situation. Second, we contrast the emerging issues against six key implementation factors. The analysis of three existing UK road pricing examples - London, Edinburgh and Durham – shows the importance of combining policy tools. Furthermore, through the above examples and theoretical arguments, we emphasise the additional need of creating and maintaining strong networks when implementing policy packages.