11 resultados para Rigid wall

em Greenwich Academic Literature Archive - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A rigid wall model has been used widely in the numerical simulation of rail vehicle impacts. Finite element impact modelling of rail vehicles is generally based on a half-width and full-length or half-length structure, depending on the symmetry. The structure and components of rail vehicles are normally designed to cope with proof loading to ensure adequate ride performance. In this paper, the authors present a study of a rail vehicle with driving cab focused on improving the modelling approach and exploring the intrinsic structural weaknesses to enhance its crashworthiness. The underpinning research used finite element analysis and compared the behaviour of the rail vehicle in different impact scenarios. It was found that the simulation of a rigid wall impact can mask structural weaknesses; that even a completely symmetrical impact may lead to an asymmetrical result; that downward bending is an intrinsic weakness of conventional rail vehicles and that a rigid part of the vehicle structure, such as the body bolster, may cause uncoordinated deformation and shear fracture between the vehicle sections. These findings have significance for impact simulation, the full-scale testing of rail vehicles and rail vehicle design in general.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, the authors present a crashworthiness assessment and suggestions for modification of a conventionally designed rail vehicle with a driving cab (cab car). The analytical approach, based on numerical analysis, consisted of two stages. Firstly, the crashworthiness of the cab car was assessed by simulating a collision between the cab car and a rigid wall. Then, after analysing structural weaknesses, the design of the cab car was modified and simulated again in the same scenario. It was found that downward bending is an intrinsic weakness in conventional rail vehicles and that jackknifing is a main form of failures in conventional rail vehicle components. The cab car, as modified by the authors, overcomes the original weaknesses and shows the desired progressive collapse behaviour in simulation. The conclusions have general relevance for other studies but more importantly, point to the need for a rethink of some aspects of rail vehicle design.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the current paper, the authors present an analysis of the structural characteristics of an intermediate rail vehicle and their effects on crash performance of the vehicle. Theirs is a simulation based analysis involving four stages. First, the crashworthiness of the vehicle is assessed by simulating an impact of the vehicle with a rigid wall. Second, the structural characteristics of the vehicle are analysed based on the structural behaviour during this impact and then the structure is modified. Third, the modified vehicle is tested again in the same impact scenario with a rigid wall. Finally, the modified vehicle is subjected to a modelled head-on impact which mirrors the real-life impact interface between two intermediate vehicles in a train impact. The emphasis of the current study is on the structural characteristics of the intermediate vehicle and the differences compared to an impact of a leading vehicle. The study shows that, similar to a leading vehicle, bending, or jackknifing is a main form of failure in this conventionally designed intermediate vehicle. It has also been found that the location of the door openings creates a major difference in the behaviour of an intermediate vehicle. It causes instability of the vehicle in the door area and leads to high stresses at the joint of the end beam with the solebar and shear stresses at the joint of the inner pillar with the cantrail. Apart from this, the shapes of the vehicle ends and impact interfaces are also different and have an effect on the crash performance of the vehicles. The simulation results allow the identification of the structural characteristics and show the effectiveness of relevant modifications. The conclusions have general relevance for the crashworthiness of rail vehicle design

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Slippage due to wall depletion effect is well-known in rheological investigation. The aim of this study was to investigate the influence of the paste microstructure on slip formation for the paste materials (lead-free solder paste and isotropic conductive adhesives). The effect of different flowgeometries, gap heights and surface roughness on the paste viscosity was investigated. The utilisation of different measuring geometries has not clearly showed the presence of wall-slip in the paste samples. The existence of wall-slip was found to be pronounced when gap heights were varied using the parallel plate geometry. It was also found that altering the surface roughness of the parallel plate measuring geometry did not significantly eliminate wall-slip as expected. But results indicate that the use of a relatively rough surface helps to increase paste adhesion to the plates and to a certain extent inducing structural breakdown in the paste. Most importantly, the study also demonstrated on how the wall-slip formation in the paste material could be utilised for understanding of the paste microstructure and its flow behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wall-slip plays an important role in the flow behaviour of solder paste materials. The wall-slip arises due to the various attractive and repulsive forces acting between the solder particles and the walls of the measuring geometry. These interactions could lead to the presence of a thin liquid layer adjacent to the wall, which causes slippage. The aim of this study is to investigate the influence of the solder paste formulation on wall-slip formation and its effect on the printability of these pastes material. A wall slip model is utilised to calculate the true viscosity and slip velocity for the lead-free solder pastes samples used in this study. The difference in the measured viscosity and the true viscosity could indicate wall-slip formation between the solder pastes and the parallel plate. Sample P1 showed a higher slip velocity compared to sample P2. The slip velocity calculated for the solder pastes could be used as a performance indicator to understand the paste release characteristics in the stencil printing process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wall-slip plays an important role in characterising the flow behaviour of solder paste materials. The wall slip arises due to the various attractive and repulsive forces acting between the solder particles and the walls of the measuring geometry.These interactions could lead to the presence of a thin solvent layer adjacent to the wall, which gives rise to slippage. The wall slip effect can play an important role in ensure successfulpaste release after the printing process. Wall-slip plays animportant role in characterising the flow behaviour of solderpastes and isotropic conductive adhesives. The study investigates the wall-slip formation in solder paste andisotropic conductive adhesives using flow visualisation technique. The slip distance was measured for parallel plate with different surface roughness in order to quantify the wallslip formations in these paste materials. An ink marker line was drawn between the parallel plate and the free surface of the sample. The parallel was rotated slowly at a constant shear rate of 0.05 sec-1 and the displacement of the ink marker was observed using a video microscope and image capturing software was utilised to capture the displacement of ink marker. From this study, it was found that the wall-slip effect was evident in all the paste materials. In addition, the different surface roughness of the parallel plates did not prevent the formation of wall-slip. This study has revealed that the wallslip effect could used to understand the flow behaviour of the paste in the stencil printing process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solder paste is the most important strategic bonding material used in the assembly of surface mount components in electronics manufacturing. As the trend towards miniaturisation of electronic products continues, there is an increasing demand for better understanding of the flow and deformation that is, the rheological behaviour of solder paste formulations. Wall slip plays an important role in characterising the flow behaviour of solder paste materials. The problem of wall slip arises due to the various attractive and repulsive forces acting between the solder particles and the walls of the measuring geometry. These interactions could lead to the presence of a thin solvent layer adjacent to the wall, which gives rise to slippage. In rheological measurements, slip effects can generally be avoided by using roughened surfaces for measuring geometries. In this paper, a novel technique is developed to study the effect of wall slip in the rheological measurements of lead-free solder paste. The viscosity and oscillatory data obtained for three different solder paste samples (from measuring geometries of different surface roughness) havebeen analysed and compared. In viscosity measurements, slip effects were dominant at low shear rates and the use of serrated surfaces was found to be quite effective in minimizing slip effects. Oscillatory measurements were also affected by roughening the surfaces of measuring geometries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Annular, ring or torsional shear testers are commonly used in bulk solids handling research for the purpose of powder characterisation or equipment design. This paper reports from a DEFRA sponsored project which aims to develop an industrial powder flow-ability tester, (based on the annular shear tester) that is economic to buy and quick and easy to use in trained but unskilled hands. This paper compares the wall failure loci measured with an annular shear cell with measurements obtained using the accepted standard wall friction tester, the Jenike shear cell. These wall failure loci have been measured for several bulk solids which range from fine cohesive powders to free-flowing granular materials, on a stainless steel 304 2B wall surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the trend toward further miniaturisation of pocket and handheld consumer electronic products continues apace, the requirements for even smaller solder joints will continue. With further reductions in the size of solder joints, the reliability of solder joints will become more and more critical to the long-term performance of electronic products. Solder joints play an important role in electronics packaging, serving both as electrical interconnections between the components and the board, and as mechanical support for components. With world-wide legislation for the removal/reduction of lead and other hazardous materials from electrical and electronic products, the electronics manufacturing industry has been faced with an urgent search for new lead-free solder alloy systems and other solder alternatives. In order to achieve high volume, low cost production, the stencil printing process and subsequent wafer bumping of solder paste has become indispensable. There is wide agreement in industry that the paste printing process accounts for the majority of assembly defects, and most defects originate from poor understanding of the effect of printing process parameters on printing performance. The printing of ICAs and lead-free solder pastes through the very small stencil apertures required for flip chip applications was expected to result in increased stencil clogging and incomplete transfer of paste to the printed circuit pads. Paste release from the stencil apertures is dependent on the interaction between the solder paste, surface pad and aperture wall; including its shape. At these very narrow aperture sizes the paste rheology becomes crucial for consistent paste withdrawal because for smaller paste volumes surface tension effects become dominant over viscous flow. Successful aperture filling and release will greatly depend on the rheology of the paste material. Wall-slip plays an important role in characterising the flow behaviour of solder paste materials. The wall- slip arises due to the various attractive and repulsive forces acting between the solder particles and the walls of the measuring geometry. These interactions could lead to the presence of a thin solvent layer adjacent to the wall, which gives rise to slippage. The wall slip effect can play an important role in ensuring successful paste release after the printing process. The aim of this study was to investigate the influence of the paste microstructure on slip formation for the paste materials (lead-free solder paste and isotropic conductive adhesives). The effect of surface roughness on the paste viscosity was investigated. It was also found that altering the surface roughness of the parallel plate measuring geometry did not significantly eliminate wall slip as was expected. But results indicate that the use of a relatively rough surface helps to increase paste adhesion to the plates, inducing structural breakdown of the paste. Most importantly, the study also demonstrated on how the wall slip formation in the paste material could be utilised for understanding of the paste microstructure and its flow behaviour