14 resultados para Rheological parameters

em Greenwich Academic Literature Archive - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the application of computational fluid dynamics (CFD) to simulate the macroscopic bulk motion of solder paste ahead of a moving squeegee blade in the stencil printing process during the manufacture of electronic components. The successful outcome of the stencil printing process is dependent on the interaction of numerous process parameters. A better understanding of these parameters is required to determine their relation to print quality and improve guidelines for process optimization. Various modelling techniques have arisen to analyse the flow behaviour of solder paste, including macroscopic studies of the whole mass of paste as well as microstructural analyses of the motion of individual solder particles suspended in the carrier fluid. This work builds on the knowledge gained to date from earlier analytical models and CFD investigations by considering the important non-Newtonian rheological properties of solder pastes which have been neglected in previous macroscopic studies. Pressure and velocity distributions are obtained from both Newtonian and non-Newtonian CFD simulations and evaluated against each other as well as existing established analytical models. Significant differences between the results are observed, which demonstrate the importance of modelling non-Newtonian properties for realistic representation of the flow behaviour of solder paste.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cu column bumping is a novel flip chip packaging technique that allows Cu columns to be bonded directly with the dies. It has eliminated the under-bump-metallurgy (UBM) fonnation step of the traditional flip chip manufacturing process. This bumping technique has the potential benefits of simplifying the flip chip manufacturing process, increasing productivity and the UO counts. In this paper, a study of reliability of Cu column bumped flip chips will be presented. Computer modelling methods have been used to predict the shape of solder joints and the response of flip chips to cyclic thermal-mechanical loading. The accumulated plastic strain energy at the corner solder joints has been used as an indicator of the solder joint reliability. Models with a wide range of design parameters have been compared for their reliability. The design parameters that have been investigated are the copper column height and radius, PCB pad radius, solder volume and Cu column wetting height. The relative importance ranking of these parameters has been obtained. The Lead-free solder material 96.5Sn3.5Ag has been used in this modelling work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wall-slip plays an important role in the flow behaviour of solder paste materials. The wall-slip arises due to the various attractive and repulsive forces acting between the solder particles and the walls of the measuring geometry. These interactions could lead to the presence of a thin liquid layer adjacent to the wall, which causes slippage. The aim of this study is to investigate the influence of the solder paste formulation on wall-slip formation and its effect on the printability of these pastes material. A wall slip model is utilised to calculate the true viscosity and slip velocity for the lead-free solder pastes samples used in this study. The difference in the measured viscosity and the true viscosity could indicate wall-slip formation between the solder pastes and the parallel plate. Sample P1 showed a higher slip velocity compared to sample P2. The slip velocity calculated for the solder pastes could be used as a performance indicator to understand the paste release characteristics in the stencil printing process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lead-free solder paste printing process accounts for majority of the assembly defects in the electronic manufacturing industry. The study investigates rheological behaviour and stencil printing performance of the lead-free solder pastes (Sn/Ag/Cu). Oscillatory stress sweep test was carried out to study the visco-elastic behaviour of the lead-free solder pastes. The visco-elastic behaviour of the paste encompasses solid and liquid characteristic of the paste, which could be used to study the flow behaviour experienced by the pastes during the stencil printing process. From this study, it was found that the solid characteristics (G0) is higher than the liquid characteristic (G0 0) for the pastes material. In addition, the results from the study showed that the solder paste with a large G0 = G0 0 has a higher cohesiveness resulting in poor withdrawal of the paste during the stencil printing process. The phase angles (d) was used to correlate the quality of the dense suspensions to the formulation of solder paste materials. This study has revealed the value of having a rheological measurement for explaining and characterising solder pastes for stencil printing. As the demand for lead free pastes increases rheological measurements can assist with the formulation or development of new pastes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solder pastes and isotropic conductive adhesives (ICAs) are widely used as a principal bonding medium in the electronic industry. This study investigates the rheological behaviour of the pastes (solder paste and isotropic conductive adhesives) used for flip-chip assembly. Oscillatory stress sweep test are performed to evaluate solid characteristic and cohesiveness of the lead-free solder pastes and isotropic conductive adhesive paste materials. The results show that the G' (storage modulus) is higher than G '' (loss modulus) for the pastes material indicating a solid like behaviour. It result shows that the linear visco-elastic region for the pastes lies in a very small stress range, below 10 Pa. in addition, the stress at which the value of storage modulus is equal to that of loss modulus can be used as an indicator of the paste cohesiveness. The measured cross-over stress at G'=G '' shows that the solder paste has higher stress at G'=G '' compared to conductive adhesives. Creep-recovery test method is used to study the slump behaviour in the paste materials. The conductive adhesive paste shows a good recovery when compared to the solder pastes. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solder paste is the most important strategic bonding material used in the assembly of surface mount devices in electronic industries. It is known to exhibit a thixotropic behavior, which is recognized by the decrease in apparent viscosity of paste material with time when subjected to a constant shear rate. The proper characterization of this time-dependent rheological behavior of solder pastes is crucial for establishing the relationships between the pastes structure and flow behavior; and for correlating the physical parameters with paste printing performance. In this article, we present a novel method which has been developed for characterizing the time-dependent and non-Newtonian rheological behavior of solder pastes and flux mediums as a function of shear rates. We also present results of the study of the rheology of the solder pastes and flux mediums using the structural kinetic modeling approach, which postulates that the network structure of solder pastes breaks down irreversibly under shear, leading to time and shear-dependent changes in the flow properties. Our results show that for the solder pastes used in the study, the rate and extent of thixotropy was generally found to increase with increasing shear rate. The technique demonstrated in this study has wide utility for R&D personnel involved in new paste formulation, for implementing quality control procedures used in solder-paste manufacture and packaging; and for qualifying new flip-chip assembly lines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solder paste is the most widely used bonding material in the assembly of surface mount devices in electronic industries. It generally has a flocculated structure (show aggregation of solder particles), and hence are known to exhibit a thixotropic behavior. This is recognized by the decrease in apparent viscosity of paste material with time when subjected to a constant shear rate. The proper characterisation of this timedependent rheological behaviour of solder pastes is crucial for establishing the relationships between the pastes’ structure and flow behaviour; and for correlating the physical parameters with paste printing performance. In this paper, we present a novel method which has been developed for characterising the timedependent and non-Newtonian rheological behaviour of solder pastes as a function of shear rates. The objective of the study reported in this paper is to investigate the thixotropic build-up behaviour of solder pastes. The stretched exponential model(SEM) has been used to model the structural changes during the build-up process and to correlate model parameters with the paste printing process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solder paste plays an important role in the electronic assembly process by providing electrical, mechanical and thermal bonding between the components and the substrate. The rheological characterisation of pastes is an important step in the design and development of new paste formulations. With the ever increasing trend of miniaturisation of electronic products, the study of the rheological properties of solder pastes is becoming an integral part in the R&D of new paste formulations and in the quality monitoring and control during paste manufacture and electronic assembly process. This research work outlines some of the novel techniques which can be successfully used to investigate the rheology of leadfree solder pastes. The report also presents the results of the correlation of rheological properties with solder paste printing performance. Four different solder paste samples (namely paste P1, P2, P3 and P4) with different flux vehicle systems and particle size distributions were investigated in the study. As expected, all the paste samples showed shear thinning behaviour. Although the samples displayed similar flow behaviour at high shear rates, differences were observed at low shear rates. In the stencil printing trials, round deposits showed better results than rectangular deposits in terms of paste heights and aperture filling. Our results demonstrate a good correlation between higher paste viscosity and good printing performance. The results of the oscillatory and thixotropy tests were also successfully correlated to the printing behaviour of solder paste.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stencil printing of solder pastes is a critical stage in the SMT assembly process as a high proportion of the solder-related defects can be attributed to this stage. As the trend towards product miniaturization continues, there is a greater need for better understanding of the rheological behaviour and printing performance of new paste formulations. This fundamental understanding is crucial for achieving the repeatable solder paste deposits from board-to-board and pad-to-pad required for more reliable solder interconnections. The paper concerns a study on the effect of ageing on the rheological characteristics and printing performance of new lead-free solder pastes formulations used for flip-chip assembly applications. The objective is to correlate the rheological characteristics of aged paste samples to their printing performance. The methodology developed can be used for bench-marking new lead-free paste formulations in terms of shelf life, the potential deterioration in rheological characteristics and their printing performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose – The purpose of this paper is to investigate the rheological behaviour of three different lead-free solder pastes used for surface mount applications in the electronic industry.Design/methodology/approach – This study concerns the rheological measurements of solder paste samples and is made up of three parts. The first part deals with the measurement of rhelogical properties with three different measuring geometries, the second part looks into the effect of frequencies on oscillatory stress sweep measurements and the final part reports on the characterisation and comparison of three different types of Pb-free solder pastes. Findings – Among the three geometries, the serrated parallel plate was found effective in minimising the wall-slip effect. From the oscillatory stresssweep data with different frequencies; it was observed that the linear visco-elastic region is independent of frequency for all the solder paste samples. To understand the shear thinning behaviour of solder paste, the well known Cross and Carreau models were fitted to the viscosity data. Moreover,creep-recovery and dynamic frequency-sweep tests were also carried out without destroying the sample’s structure and have yielded useful information on the pastes behaviour.Research limitations/implications – More extensive research is needed to fully characterise the wall-slip behaviour during the rheological measurements of solder pastes. Practical implications – The rheological test results presented in this paper will be of important value for research and development, quality control and facilitation of the manufacturing of solder pastes and flux mediums. Originality/value – This paper shows how wall-slip effects can be effectively avoided during rheological measurements of solder pastes. The paper also outlines how different rheological test methods can be used to characterise solder paste behaviours

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The market for solder paste materials in the electronic manufacturing and assembly sector is very large and consists of material and equipment suppliers and end users. These materials are used to bond electronic components (such as flip-chip, CSP and BGA) to printed circuit boards (PCB's) across a range of dimensions where the solder interconnects can be in the order of 0.05mm to 5mm in size. The non-Newtonian flow properties exhibited by solder pastes during its manufacture and printing/deposition phases have been of practical concern to surface mount engineers and researchers for many years. The printing of paste materials through very small-sized stencil apertures is known to lead to increased stencil clogging and incomplete transfer of paste to the substrate pads. At these very narrow aperture sizes the paste rheology and particle-wall interactions become crucial for consistent paste withdrawal. These non-Newtonian effects must be understood so that the new paste formulations can be optimised for consistent printing. The focus of the study reported in this paper is the characterisation of the rheological properties of solder pastes and flux mediums, and the evaluation of the effect of these properties on the pastes' printing performance at the flip-chip assembly application level. Solder pastes are known to exhibit a thixotropic behaviour, which is recognised by the decrease in apparent viscosity of paste material with time when subjected to a constant shear rate. The proper characterisation of this time-dependent theological behaviour of solder pastes is crucial for establishing the relationships between the pastes' structure and flow behaviour; and for correlating the physical parameters with paste printing performance. In this paper, we present a number of methods which have been developed for characterising the time-dependent and non-Newtonian rheological behaviour of solder pastes and flux mediums as a function of shear rates. We also present results of the study of the rheology of the solder pastes and flux mediums using the structural kinetic modelling approach, which postulates that the network structure of solder pastes breaks down irreversibly under shear, leading to time and shear dependent changes in the flow properties. Our results show that for the solder pastes used in the study, the rate and extent of thixotropy was generally found to increase with increasing shear rate. The technique demonstrated in this study has wide utility for R&D personnel involved in new paste formulation, for implementing quality control procedures used in solder paste manufacture and packaging; and for qualifying new flip-chip assembly lines

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rheological properties of solder pastes are very important for a high quality surface mount technology process. The stencil/screen printing process of solder pastes is one of the most critical steps in the SMT assembly process, as most of the assembly defects can often be shown to originate from paste rheology and associated poor printing performance. This paper concerns an investigation of the effect of solder paste composition on the rheological properties and behaviour of four different solder pastes. We report on the evaluation of three different paste formulations based on the no-clean flux composition, with different alloy composition, metal content and particle size using a range of rheological characterisation techniques - including viscosity measurements, yield stress, oscillatory and creep-recovery tests. Our results show that in the viscosity test, all solder pastes exhibited a shear thinning behaviour in nature with different highest maximum viscosity. In the region of shear thinning behaviour the paste 3 delivered the best results. Viscosity test helps to understand the solid and cohesive behaviour of solder pastes. Good solid and cohesive behaviour indicates a good paste roll and helps to avoid paste bleeding. The yield stress test has been used to study the effect of temperature on the flow behaviour of solder pastes. Yield stress was measured for a range of temperature from 15deg C to 35deg C with an increment of 5degC. The result indicated a decreasing of the yield stress point if the temperature was increased. Paste 4 has shown the minimum dependence on temperature. The oscillatory test has been used to find out the linear visco-elastic range and to study the solid and liquid like behaviours of solder pastes. Paste 1 indicated the biggest linear visco-elastic region (LVR) and the highest value of G' and G" which means solder paste 1 will be needed a higher squeegee pressure in the printing process. In the creep recovery test paste 4 showed the best- - recovery and the lowest values of creep and recovery compliance which indicated a good printing behaviour. The test also has showed the solder paste with smaller particle size exhibit less recovery

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variation in temperature can have a significant impact on the rheological characterisation of solder pastes used in the electronic assembly of surface mount devices. This paper concerns the study of the effect of temperature on slumping characteristics of lead-free solder pastes. The identification of the slumping characteristics can help in the correlation of the pastes characteristics to its printing performance. Further issues, which aid in justifying the undertaking of such a study, include the temperature differences identified both at the squeegee during the print, and during reflow. Due to these temperature variations, it is imperative to understand how slump differs with a temperature gradient