6 resultados para Rh
em Greenwich Academic Literature Archive - UK
Resumo:
In this paper, the effects of the solder reflow process on the reliability of anisotropic conductive film (ACF) interconnections for flip chip on flex (FCOF) applications are investigated. Experiments as well as computer modeling methods have been used. In the experiments, it was found that the contact resistance of ACF joints increased after the subsequent reflow process, and the magnitude of this increase was strongly correlated to the peak temperature of the reflow profile. Nearly 40% of the joints were opened (i.e. lifted away from the pad) after the reflow process with 260 °C peak temperature while no opening was observed when the peak temperature was 210 °C. It is believed that the CTE mismatch between the polymer particle and the adhesive matrix is the main cause of this contact degradation. It was also found that the ACF joints after the reflow process with 210 °C peak temperature showed a high ability to resist water absorption under steady state 85 °C/85%RH conditions, probably because the curing degree of the ACF was improved during the reflow process. To give a good understanding, a 3D model of an ACF joint structure was built and finite element analysis was used to predict the stress distribution in the conductive particles, adhesive matrix and metal pads during the reflow process.
Resumo:
Anisotropic conductive film (ACF) which consists of an adhesive epoxy matrix and randomly distributed conductive particles are widely used as the connection material for electronic devices with high I/O counts. However, for the semiconductor industry the reliability of the ACF is still a major concern due to a lack of experimental reliability data. This paper reports the investigations into the moisture-induced failures in Flip-Chip-on-Flex interconnections with Anisotropic Conductive Films (ACFs). Both experimental and modeling methods were applied. In the experiments, the contact resistance was used as a quality indicator and was measured continuously during the accelerated tests (autoclave tests). The temperature, relative humidity and the pressure were set at 121°C, 100%RH, and 2atm respectively. The contact resistance of the ACF joints increased during the tests and nearly 25% of the joints were found to be open after 168 hours’ testing time. Visible conduction gaps between the adhesive and substrate pads were observed. Cracks at the adhesive/flex interface were also found. For a better understanding of the experimental results, 3-D Finite Element (FE) models were built and a macro-micro modeling method was used to determine the moisture diffusion and moisture-induced stresses inside the ACF joints. Modeling results are consistent with the findings in the experimental work.
Resumo:
This paper reports the investigations into the moisture induced failures in flip-chip-on-flex interconnections with anisotropic conductive films (ACF). Both experimental and modeling methods were applied. In the experiments, the contact resistance was used as a quality indicator and was measured continuously during the accelerated tests (autoclave tests). The temperature, relative humidity and the pressure were set at 121°C, 100%RH, 1atm respectively. The contact resistance of the ACF joints increased during the tests and nearly 25% of the joints were found to be open after 168 hours' testing time. Visible conduction gaps between the adhesive and substrate pads were observed. Cracks at the adhesive/flex interface were also found. It is believed that the swelling effect of the adhesive and the water penetration along the adhesive/flex interface are the main causes of this contact degradation. Another finding from the experimental work was that the ACF interconnections that had undergone the reflow treatment were more sensitive to the moisture and showed worse reliability during the tests. For a better understanding of the experimental results, 3D finite element (FE) models were built and a macro-micro modeling method was used to determine the moisture diffusion and moisture-induced stresses inside the ACF joints. Modeling results are consistent with the findings in the experimental work.
Resumo:
Purpose – This paper discusses the use of modelling techniques to predict the reliability of an anisotropic conductive film (ACF) flip chip in a humid environment. The purpose of this modelling work is to understand the role that moisture plays in the failure of ACF flip chips. Design/methodology/approach – A 3D macro-micro finite element modelling technique was used to determine the moisture diffusion and moisture-induced stresses inside the ACF flip chip. Findings – The results show that the ACF layer in the flip chip can be expected to be fully saturated with moisture after 3?h at 121°C, 100%RH, 2?atm test conditions. The swelling effect of the adhesive due to this moisture absorption causes predominately tensile stress at the interface between the adhesive and the metallization, which could cause a decrease in the contact area, and therefore an increase in the contact resistance. Originality/value – This paper introduces a macro-micro modelling technique which enables more detailed 3D modelling analysis of an ACF flip chip than previously.
Resumo:
The water uptake and water loss behaviour in three different formulations of zinc oxy-chloride cement have been studied in detail. Specimens of each material were subjected to a high humidity atmosphere (93% RH) over saturated aqueous sodium sulfate, and a low humidity desiccating atmosphere over concentrated sulfuric acid. In high humidity, the cement formulated from the nominal 75% ZnCl2 solutions gained mass, eventually becoming too sticky to weigh further. The specimens at 25% and 50% ZnCl2 by contrast lost mass by a diffusion process, though by 1 week the 50% cement had stated to gain mass and was also too sticky to weigh. In low humidity, all three cements lost mass, again by a diffusion process. Both water gain and water loss followed Fick's law for a considerable time. In the case of water loss under desiccating conditions, this corresponded to values of Mt/MĄ well above 0.5. However, plots did not go through the origin, showing that there was an induction period before true diffusion began. Diffusion coefficients varied from 1.56 x 10-5 (75% ZnCl2) to 2.75 x 10-5 cm2/s (50% ZnCl2), and appeared to be influenced not simply by composition. The drying of the 25% and 50% ZnCl2 cements in high humidity conditions occurred at a much lower rate, with a value of D of 2.5 x 10-8 cm2/s for the 25% ZnCl2 cement. This cement was found to equilibrate slowly, but total water loss did not differ significantly from that of the cements stored under desiccating conditions. Equilibration times for water loss in desiccating conditions were of the order of 2-4 hours, depending on ZnCl2 content; equilibrium water losses were respectively 28.8 [25% ZnCl2], 16.2 [50%] and 12.4 [75%] which followed the order of ZnCl2 content. It is concluded that the water transport processes are strongly influenced by the ZnCl2 content of the cement.
Resumo:
Solvent-cast films from three polymers, carboxymethylcellulose (CMC), sodium alginate (SA), and xanthan gum, were prepared by drying the polymeric gels in air. Three methods, (a) passive hydration, (b) vortex hydration with heating, and (c) cold hydration, were investigated to determine the most effective means of preparing gels for each of the three polymers. Different drying conditions [relative humidity - RH (6-52%) and temperature (3-45 degrees C)] were investigated to determine the effect of drying rate on the films prepared by drying the polymeric gels. The tensile properties of the CMC films were determined by stretching dumbbell-shaped films to breaking point, using a Texture Analyser. Glycerol was used as a plasticizer, and its effects on the drying rate, physical appearance, and tensile properties of the resulting films were investigated. Vortex hydration with heating was the method of choice for preparing gels of SA and CMC, and cold hydration for xanthan gels. Drying rates increased with low glycerol content, high temperature, and low relative humidity. The residual water content of the films increased with increasing glycerol content and high relative humidity and decreased at higher temperatures. Generally, temperature affected the drying rate to a greater extent than relative humidity. Glycerol significantly affected the toughness (increased) and rigidity (decreased) of CMC films. CMC films prepared at 45 degrees C and 6% RH produced suitable films at the fastest rate while films containing equal quantities of glycerol and CMC possessed an ideal balance between flexibility and rigidity.