6 resultados para Resolution of problems

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This poster describes a "real world" example of the teaching of Human-Computer Interaction at the final level of a Computer Science degree. It highlights many of the problems of the ever expanding HCI domain and the consequential issues of what to teach and why. The poster describes the conception and development of a new HCI course, its historical background, the justification for decisions made, lessons learnt from its implementation, and questions arising from its implementation that are yet to be addressed. For example, should HCI be taught as a course in its own right or as a component of another course? At what level is the teaching of HCI appropriate, and how is teaching influenced by industry? It considers suitable learning pedagogies as well as the demands and the contribution of industry. The experiences presented will no doubt be familiar to many HCI educators. Whilst the poster raises more questions than it answers, the resolution of some questions will hopefully be achieved by the workshop.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Computational modelling of dynamic fluid–structure interaction (DFSI) is a considerable challenge. Our approach to this class of problems involves the use of a single software framework for all the phenomena involved, employing finite volume methods on unstructured meshes in three dimensions. This method enables time and space accurate calculations in a consistent manner. One key application of DFSI simulation is the analysis of the onset of flutter in aircraft wings, where the work of Yates et al. [Measured and Calculated Subsonic and Transonic Flutter Characteristics of a 45° degree Sweptback Wing Planform in Air and Freon-12 in the Langley Transonic Dynamic Tunnel. NASA Technical Note D-1616, 1963] on the AGARD 445.6 wing planform still provides the most comprehensive benchmark data available. This paper presents the results of a significant effort to model the onset of flutter for the AGARD 445.6 wing planform geometry. A series of key issues needs to be addressed for this computational approach. • The advantage of using a single mesh, in order to eliminate numerical problems when applying boundary conditions at the fluid-structure interface, is counteracted by the challenge of generating a suitably high quality mesh in both the fluid and structural domains. • The computational effort for this DFSI procedure, in terms of run time and memory requirements, is very significant. Practical simulations require even finer meshes and shorter time steps, requiring parallel implementation for operation on large, high performance parallel systems. • The consistency and completeness of the AGARD data in the public domain is inadequate for use in the validation of DFSI codes when predicting the onset of flutter.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The paper considers the flow shop scheduling problems to minimize the makespan, provided that an individual precedence relation is specified on each machine. A fairly complete complexity classification of problems with two and three machines is obtained.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A multi-phase framework is typically required for the CFD modelling of metals reduction processes. Such processes typically involve the interaction of liquid metals, a gas (often air) top space, liquid droplets in the top space and injection of both solid particles and gaseous bubbles into the bath. The exchange of mass, momentum and energy between the phases is fundamental to these processes. Multi-phase algorithms are complex and can be unreliable in terms of either or both convergence behaviour or in the extent to which the physics is captured. In this contribution, we discuss these multi-phase flow issues and describe an example of each of the main “single phase” approaches to modelling this class of problems (i.e., Eulerian–Lagrangian and Eulerian–Eulerian). Their utility is illustrated in the context of two problems – one involving the injection of sparging gases into a steel continuous slab caster and the other based on the development of a novel process for aluminium electrolysis. In the steel caster, the coupling of the Lagrangian tracking of the gas phase with the continuum enables the simulation of the transient motion of the metal–flux interface. The model of the electrolysis process employs a novel method for the calculation of slip velocities of oxygen bubbles, resulting from the dissolution of alumina, which allows the efficiency of the process to be predicted.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper provides an overview of the developing needs for simulation software technologies for the computational modelling of problems that involve combinations of interactions amongst varying physical phenomena over a variety of time and space scales. Computational modelling of such problems requires software tech1nologies that enable the mathematical description of the interacting physical phenomena together with the solution of the resulting suites of equations in a numerically consistent and compatible manner. This functionality requires the structuring of simulation modules for specific physical phenomena so that the coupling can be effectively represented. These multi-physics and multi-scale computations are very compute intensive and the simulation software must operate effectively in parallel if it is to be used in this context. An approach to these classes of multi-disciplinary simulation in parallel is described, with some key examples of application to2 challenging engineering problems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nano-imprint forming (NIF) is among the most attractive manufacturing technologies offering high yield and low-cost fabrication of three-dimensional fine structures and patterns with resolution of few nanometres. Optimising NIF process is critical for achieving high quality products and minimising the risk of commonly observed defects. Using finite element analysis, the effect of various process parameters is evaluated and design rules for safe and reliable NIF fabrication formulated. This work is part of a major UK Grand Challenge project - 3D-Mintegration - for design, simulation, fabrication, assembly and test of next generation 3D-miniaturised systems.