4 resultados para Reliable multicast

em Greenwich Academic Literature Archive - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper demonstrates a modeling and design approach that couples computational mechanics techniques with numerical optimisation and statistical models for virtual prototyping and testing in different application areas concerning reliability of eletronic packages. The integrated software modules provide a design engineer in the electronic manufacturing sector with fast design and process solutions by optimizing key parameters and taking into account complexity of certain operational conditions. The integrated modeling framework is obtained by coupling the multi-phsyics finite element framework - PHYSICA - with the numerical optimisation tool - VisualDOC into a fully automated design tool for solutions of electronic packaging problems. Response Surface Modeling Methodolgy and Design of Experiments statistical tools plus numerical optimisaiton techniques are demonstrated as a part of the modeling framework. Two different problems are discussed and solved using the integrated numerical FEM-Optimisation tool. First, an example of thermal management of an electronic package on a board is illustrated. Location of the device is optimized to ensure reduced junction temperature and stress in the die subject to certain cooling air profile and other heat dissipating active components. In the second example thermo-mechanical simulations of solder creep deformations are presented to predict flip-chip reliability and subsequently used to optimise the life-time of solder interconnects under thermal cycling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of integrating computational mechanics (FEA and CFD) and optimization tools is to speed up dramatically the design process in different application areas concerning reliability in electronic packaging. Design engineers in the electronics manufacturing sector may use these tools to predict key design parameters and configurations (i.e. material properties, product dimensions, design at PCB level. etc) that will guarantee the required product performance. In this paper a modeling strategy coupling computational mechanics techniques with numerical optimization is presented and demonstrated with two problems. The integrated modeling framework is obtained by coupling the multi-physics analysis tool PHYSICA - with the numerical optimization package - Visua/DOC into a fuJly automated design tool for applications in electronic packaging. Thermo-mechanical simulations of solder creep deformations are presented to predict flip-chip reliability and life-time under thermal cycling. Also a thermal management design based on multi-physics analysis with coupled thermal-flow-stress modeling is discussed. The Response Surface Modeling Approach in conjunction with Design of Experiments statistical tools is demonstrated and used subsequently by the numerical optimization techniques as a part of this modeling framework. Predictions for reliable electronic assemblies are achieved in an efficient and systematic manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the assembly process using next generation electroformed stencils and Isotropic Conductive Adhesives (ICAs) as interconnection material. The utilisation of ICAs in flip-chip assembly process is investigated as an alternative to the lead and lead-free solder alloys and aims to ensure a low temperature (T < 100 °C) assembly process. The paper emphasizes and discusses in details the assembly of a flip-chip package based on copper columns bumped die and substrate with stencil printed ICA deposits at sub-100 μm pitch. A computational modelling approach is undertaken to provide comprehensive results on reliability trends of ICA joints subject to thermal cycling of the flip-chip assembly based on easy to use damage criteria and damage evaluation. Important design parameters in the package are selected and investigated using numerical modelling techniques to provide knowledge and understanding of their impact on the thermo-mechanical behaviour of the flip-chip ICA joints. Sensitivity analysis of the damage in the adhesive material is also carried out. Optimal design rules for enhanced performance and improved thermo-mechanical reliability of ICA assembled flip-chip packages are finally formulated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A computational modelling approach integrated with optimisation and statistical methods that can aid the development of reliable and robust electronic packages and systems is presented. The design for reliability methodology is demonstrated for the design of a SiP structure. In this study the focus is on the procedure for representing the uncertainties in the package design parameters, their impact on reliability and robustness of the package design and how these can be included in the design optimisation modelling framework. The analysis of thermo-mechanical behaviour of the package is conducted using non-linear transient finite element simulations. Key system responses of interest, the fatigue life-time of the lead-free solder interconnects and warpage of the package, are predicted and used subsequently for design purposes. The design tasks are to identify the optimal SiP designs by varying several package input parameters so that the reliability and the robustness of the package are improved and in the same time specified performance criteria are also satisfied