5 resultados para Reliability level

em Greenwich Academic Literature Archive - UK


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper discusses the Design for Reliability modelling of several System-in-Package (SiP) structures developed by NXP and advanced on the basis of Wafer Level Packaging (WLP). Two different types of Wafer Level SiP (WLSiP) are presented and discussed. The main focus is on the modelling approach that has been adopted to investigate and analyse the board level reliability of the presented SiP configurations. Thermo-mechanical non-linear Finite Element Analysis (FEA) is used to analyse the effect of various package design parameters on the reliability of the structures and to identify design trends towards package optimisation. FEA is used also to gain knowledge on moulded wafer shrinkage and related issues during the wafer level fabrication. The paper provides a brief outline and demonstration of a design methodology for reliability driven design optimisation of SiP. The study emphasises the advantages of applying the methodology to address complex design problems where several requirements may exist and uncertainties and interactions between parameters in the design are common.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes the work of an investigation of the effects of solder reflow process on the reliability of anisotropic conductive film (ACF) interconnection for flip-chip on flex (FCOF) applications. Experiments as well as computer modeling methods have been used. The results show that the contact resistance of ACF interconnections increases after the reflow and the magnitude of the increase is strongly correlated to the peak reflow temperature. In fact, nearly 40 percent of the joints are open when the peak reflow temperature is 260°C, while there is no opening when the peak temperature is 210°C. It is believed that the coefficient of thermal expansion (CTE) mismatch between the polymer particle and the adhesive matrix is the main cause of this contact degradation. To understand this phenomenon better, a three-dimensional (3-D) finite element (FE) model of an ACF joint has been analyzed in order to predict the stress distribution in the conductive particles, adhesive matrix and metal pads during the reflow process. The stress level at the interface between the particle and its surrounding materials is significant and it is the highest at the interface between the particle and the adhesive matrix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Design for manufacture of system-in-package (SiP) structures is dependent on a number of physical processes that affect the final quality of the package in terms of its performance and reliability. Solder joints are key structures in a SiP and their behavior can be the critical factor in terms of reliability. This paper discusses the results from a research programme on design for manufacturing of system in package (SiP) technologies. The focus of the paper is on thermo-mechanical modelling of solder joints. This includes the behavior of the joints during testing plus some important insights into the reflow process and how physical phenomena taking place at the assembly stage can affect solder joint behavior. Finite element analysis of a numerical model of an SiP structure with various design parameters is discussed. The goal of this analysis is to identify the most promising combination of design parameters which guarantee longer lifetime of the solder joints and hence the SiP component. The parameters that were studied are the size of the package (i.e. number of solder joints per row), the presence of the underfill and/or the reinforcement as well as the thickness of the passive die. Discussion was also provided on phenomena that take place during the reflow process where the solder joints are formed. In particular, the formation of intermetallics at the solder-pad interfaces

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Light has the greatest information carrying potential of all the perceivable interconnect mediums; consequently, optical fiber interconnects rapidly replaced copper in telecommunications networks, providing bandwidth capacity far in excess of its predecessors. As a result the modern telecommunications infrastructure has evolved into a global mesh of optical networks with VCSEL’s (Vertical Cavity Surface Emitting Lasers) dominating the short-link markets, predominately due to their low-cost. This cost benefit of VCSELs has allowed optical interconnects to again replace bandwidth limited copper as bottlenecks appear on VSR (Very Short Reach) interconnects between co-located equipment inside the CO (Central-Office). Spurred by the successful deployment in the VSR domain and in response to both intra-board backplane applications and inter-board requirements to extend the bandwidth between IC’s (Integrated Circuits), current research is migrating optical links toward board level USR (Ultra Short Reach) interconnects. Whilst reconfigurable Free Space Optical Interconnect (FSOI) are an option, they are complicated by precise line-of-sight alignment conditions hence benefits exist in developing guided wave technologies, which have been classified into three generations. First and second generation technologies are based upon optical fibers and are both capable of providing a suitable platform for intra-board applications. However, to allow component assembly, an integral requirement for inter-board applications, 3rd generation Opto-Electrical Circuit Boards (OECB’s) containing embedded waveguides are desirable. Currently, the greatest challenge preventing the deployment of OECB’s is achieving the out-of-plane coupling to SMT devices. With the most suitable low-cost platform being to integrate the optics into the OECB manufacturing process, several research avenues are being explored although none to date have demonstrated sufficient coupling performance. Once in place, the OECB assemblies will generate new reliability issues such as assembly configurations, manufacturing tolerances, and hermetic requirements that will also require development before total off-chip photonic interconnection can truly be achieved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses a reliability based optimisation modelling approach demonstrated for the design of a SiP structure integrated by stacking dies one upon the other. In this investigation the focus is on the strategy for handling the uncertainties in the package design inputs and their implementation into the design optimisation modelling framework. The analysis of fhermo-mechanical behaviour of the package is utilised to predict the fatigue life-time of the lead-free board level solder interconnects and warpage of the package under thermal cycling. The SiP characterisation is obtained through the exploitation of Reduced Order Models (ROM) constructed using high fidelity analysis and Design of Experiments (DoE) methods. The design task is to identify the optimal SiP design specification by varying several package input parameters so that a specified target reliability of the solder joints is achieved and in the same time design requirements and package performance criteria are met