22 resultados para Rear-Seat Passengers.

em Greenwich Academic Literature Archive - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computer based mathematical models describing the aircraft evacuation process have a vital role to play in aviation safety. However such models have a heavy dependency on real evacuation data in order to (a) identify the key processes and factors associated with evacuation, (b) quantify variables and parameters associated with the identified factors/processes and finally (c) validate the models. The Fire Safety Engineering Group of the University of Greenwich is undertaking a large data extraction exercise from three major data sources in order to address these issues. This paper describes the extraction and application of data from one of these sources - aviation accident reports. To aid in the storage and analysis of the raw data, a computer database known as AASK (aircraft accident statistics and knowledge) is under development. AASK is being developed to store human observational and anecdotal data contained in accident reports and interview transcripts. AASK comprises four component sub-databases. These consist of the ACCIDENT (crash details), FLIGHT ATTENDANT (observations and actions of the flight attendants), FATALS (details concerning passenger fatalities) and PAX (observations and accounts from individual passengers) databases. AASK currently contains information from 25 survivable aviation accidents covering the period 4 April 1977 to 6 August 1995, involving some 2415 passengers, 2210 survivors, 205 fatalities and accounts from 669 people. In addition to aiding the development of aircraft evacuation models, AASK is also being used to challenge some of the myths which proliferate in the aviation safety industry such as, passenger exit selection during evacuation, nature and frequency of seat jumping, speed of passenger response and group dynamics. AASK can also be used to aid in the development of a more comprehensive approach to conducting post accident interviews, and will eventually be used to store the data directly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes recent developments with the Aircraft Accident Statistics and Knowledge (AASK) database. The AASK database is a repository of survivor accounts from aviation accidents developed by the Fire Safety Engineering Group of the University of Greenwich with support from the UK CAA. Its main purpose is to store observational and anecdotal data from the actual interviews of the occupants involved in aircraft accidents. Access to the latest version of the database (AASK V3.0) is available over the Internet. AASK consists of information derived from both passenger and cabin crew interviews, information concerning fatalities and basic accident details. Also provided with AASK is the Seat Plan Viewer that graphically displays the starting locations of all the passengers - both survivors and fatalities - as well as the exits used by the survivors. Data entered into the AASK database is extracted from the transcripts supplied by the National Transportation Safety Board in the US and the Air Accident Investigation Branch in the UK. The quality and quantity of the data was very variable ranging from short summary reports of the accidents to boxes of individual accounts from passengers, crew and investigators. Data imported into AASK V3.0 includes information from 55 accidents and individual accounts from 1295 passengers and 110 crew.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we briefly describe new modelling capabilities within the airEXODUS evacuation model. These new capabilities involve the explicit ability to simulate the interaction of crew with passengers in managing evacuation situations

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mathematical simulation of the evacuation process has a wide and largely untapped scope of application within the aircraft industry. The function of the mathematical model is to provide insight into complex behaviour by allowing designers, legislators, and investigators to ask ‘what if’ questions. Such a model, EXODUS, is currently under development, and this paper describes its evolution and potential applications. EXODUS is an egress model designed to simulate the evacuation of large numbers of individuals from an enclosure, such as an aircraft. The model tracks the trajectory of each individual as they make their way out of the enclosure or are overcome by fire hazards, such as heat and toxic gases. The software is expert system-based, the progressive motion and behaviour of each individual being determined by a set of heuristics or rules. EXODUS comprises five core interacting components: (i) the Movement Submodel — controls the physical movement of individual passengers from their current position to the most suitable neighbouring location; (ii) the Behaviour Submodel — determines an individual's response to the current prevailing situation; (iii) the Passenger Submodel — describes an individual as a collection of 22 defining attributes and variables; (iv) the Hazard Submodel — controls the atmospheric and physical environment; and (v) the Toxicity Submodel — determines the effects on an individual exposed to the fire products, heat, and narcotic gases through the Fractional Effective Dose calculations. These components are briefly described and their capabilities and limitations are demonstrated through comparison with experimental data and several hypothetical evacuation scenarios.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Computer based mathematical models describing the aircraft evacuation process have a vital role to play in aviation safety. However, such models have a heavy dependency on real evacuation data. The Fire Safety Engineering Group of the University of Greenwich is undertaking a large data extraction exercise in order to address this issue. This paper describes the extraction and application of data from aviation accident reports. To aid in the storage and analysis of the raw data, a computer database known as AASK (Aircraft Accident Statistics and Knowledge) is under development. AASK is being developed to store human observational and anecdotal data contained in accident reports and interview transcripts. AASK currently contains information from 25 survivable aviation accidents covering the period 04/04/77 to 06/08/95, involving some 2415 passengers, 2210 survivors, 205 fatalities and accounts from 669 people. Copyright © 1999 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While incidents requiring the rapid egress of passengers from trains are infrequent, perhaps the most challenging scenario for passengers involves the evacuation from an overturned carriage subjected to fire. In this paper we attempt to estimate the flow rate capacity of an overturned rail carriage end exit. This was achieved through two full-scale evacuation experiments, in one of which the participants were subjected to non-toxic smoke. The experiments were conducted as part of a pilot study into evacuation from rail carriages. In reviewing the experimental results, it should be noted that only a single run of each trial was undertaken with a limited — though varied — population. As a result it is not possible to test the statistical significance of the evacuation times quoted and so the results should be treated as indicative rather than definitive. The carriage used in the experiments was a standard class Mark IID which, while an old carriage design, shares many features with those carriages commonly found on the British rail network. In the evacuation involving smoke, the carriage end exit was found to achieve an average flow rate capacity of approximately 5.0 persons/min. The average flow rate capacity of the exit without smoke was found to be approximately 9.2 persons/min. It was noted that the presence of smoke tended to reduce significantly the exit flow rate. Due to the nature of the experimental conditions, these flow rates are considered optimistic. Finally, the authors make several recommendations for improving survivability in rail accidents. Copyright © 2000 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper examines the influence of exit separation, exit availability and seating configuration on aircraft evacuation efficiency and evacuation time. The purpose of this analysis is to explore how these parameters influence the 60-foot exit separation requirement found in aircraft certification rules. The analysis makes use of the airEXODUS evacuation model and is based on a typical wide-body aircraft cabin section involving two pairs of Type-A exits located at either end of the section with a maximum permissible loading of 220 passengers located between the exits. The analysis reveals that there is a complex relationship between exit separation and evacuation efficiency. A main finding of this work is that for the cabin section examined, with a maximum passenger load of 220 and under certification conditions, exit separations up to 170ft will result in approximately constant total evacuation times and average personal evacuation times. This practical exit separation threshold is decreased to 114ft if another combination of exits is selected. While other factors must also be considered when determining maximum allowable exit separations, these results suggest it is not possible to mandate a maximum exit separation without taking into consideration exit type, exit availability and aircraft configuration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When designing a new passenger ship or modifying an existing design, how do we ensure that the proposed design and crew emergency procedures are safe from an evacuation point of view? In the wake of major maritime disasters such as the Herald of Free Enterprise and the Estonia and in light of the growth in the numbers of high density, high-speed ferries and large capacity cruise ships, issues concerned with the evacuation of passengers and crew at sea are receiving renewed interest. In the maritime industry, ship evacuation models offer the promise to quickly and efficiently bring evacuation considerations into the design phase, while the ship is "on the drawing board". maritimeEXODUS-winner of the BCS, CITIS and RINA awards - is such a model. Features such as the ability to realistically simulate human response to fire, the capability to model human performance in heeled orientations, a virtual reality environment that produces realistic visualisations of the modelled scenarios and with an integrated abandonment model, make maritimeEXODUS a truly unique tool for assessing the evacuation capabilities of all types of vessels under a variety of conditions. This paper describes the maritimeEXODUS model, the SHEBA facility from which data concerning passenger/crew performance in conditions of heel is derived and an example application demonstrating the models use in performing an evacuation analysis for a large passenger ship partially based on the requirements of MSC circular 1033.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When designing a new passenger ship or modifying an existing design, how do we ensure that the proposed design and crew emergency procedures are safe from an evacuation resulting from fire or other incident? In the wake of major maritime disasters such as the Scandinavian Star, Herald of Free Enterprise, Estonia and in light of the growth in the number of high density, high-speed ferries and large capacity cruise ships, issues concerning the evacuation of passengers and crew at sea are receiving renewed interest. Fire and evacuation models with features such as the ability to realistically simulate the spread of heat and smoke and the human response to fire as well as the capability to model human performance in heeled orientations linked to a virtual reality environment that produces realistic visualisations of the modelled scenarios are now available and can be used to aid the engineer in assessing ship design and procedures. This paper describes the maritimeEXODUS ship evacuation and the SMARTFIRE fire simulation model and provides an example application demonstrating the use of the models in performing fire and evacuation analysis for a large passenger ship partially based on the requirements of MSC circular 1033

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On the 19 June 2001, a Thames passenger/tour boat underwent several evacuation trials. This work was conducted in order to collect data for the validation of marine-based computer models. The trials involved 111 participants who were distributed throughout the vessel. The boat had two decks and two points of exit from the lower deck placed on either side of the craft, forward and aft. The boat had a twin set of staircases towards the rear of the craft, just forward of the rear exits. maritimeEXODUS was used to simulate the full-scale evacuation trials conducted. The simulation times generated were compared against the original results and categorised according to the exit point availability. The predictions closely approximate the original results, differing by an average of 6.6% across the comparisons, with numerous qualitative similarities between the predictions and experimental results. The maritimeEXODUS evacuation model was then used to examine the evacuation procedure currently employed on the vessel. This was found to have potential to produce long evacuation times. maritimeEXODUS was used to suggest modifications to the mustering procedures. These theoretical results suggest that it is possible to significantly reduce evacuation times.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Aircraft Accident Statistics and Knowledge (AASK) database is a repository of survivor accounts from aviation accidents. Its main purpose is to store observational and anecdotal data from the actual interviews of the occupants involved in aircraft accidents. The database has wide application to aviation safety analysis, being a source of factual data regarding the evacuation process. It is also key to the development of aircraft evacuation models such as airEXODUS, where insight into how people actually behave during evacuation from survivable aircraft crashes is required. This paper describes recent developments with the database leading to the development of AASK v3.0. These include significantly increasing the number of passenger accounts in the database, the introduction of cabin crew accounts, the introduction of fatality information, improved functionality through the seat plan viewer utility and improved ease of access to the database via the internet. In addition, the paper demonstrates the use of the database by investigating a number of important issues associated with aircraft evacuation. These include issues associated with social bonding and evacuation, the relationship between the number of crew and evacuation efficiency, frequency of exit/slide failures in accidents and exploring possible relationships between seating location and chances of survival. Finally, the passenger behavioural trends described in analysis undertaken with the earlier database are confirmed with the wider data set.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Very Large Transport Aircraft (VLTA) pose considerable challenges to designers, operators and certification authorities. Questions concerning seating arrangement, nature and design of recreational space, the number, design and location of internal staircases, the number of cabin crew required and the nature of the cabin crew emergency procedures are just some of the issues that need to be addressed. Other more radical concepts such as blended wing body (BWB) design, involving one or two decks with possibly four or more aisles offer even greater challenges. Can the largest exits currently available cope with passenger flow arising from four or five aisles? Do we need to consider new concepts in exit design? Should the main aisles be made wider to accommodate more passengers? In this paper we demonstrate how computer based evacuation models can be used to investigate these issues through examination of staircase evacuation procedures for VLTA and aisle/exit configuration for BWB cabin layouts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Computer based mathematical models describing the aircraft evacuation process have a vital role to play in the design and development of safer aircraft, the implementation of safer and more rigorous certification criteria, in cabin crew training and post-mortem accident investigation. As the risk of personal injury and the costs involved in performing full-scale certification trials are high, the development and use of these evacuation modelling tools are essential. Furthermore, evacuation models provide insight into the evacuation process that is impossible to derive from a single certification trial. The airEXODUS evacuation model has been under development since 1989 with support from the UK CAA and the aviation industry. In addition to describing the capabilities of the airEXODUS evacuation model, this paper describes the findings of a recent CAA project aimed at investigating model accuracy in predicting past certification trials. Furthermore, airEXODUS is used to examine issues related to the Blended Wing Body (BWB) and Very Large Transport Aircraft (VLTA). These radical new aircraft concepts pose considerable challenges to designers, operators and certification authorities. BWB concepts involving one or two decks with possibly four or more aisles offer even greater challenges. Can the largest exits currently available cope with passenger flow arising from four or five aisles? Do we need to consider new concepts in exit design? Should the main aisle be made wider to accommodate more passengers? In this paper we discuss various issues evacuation related issues associated VLTA and BWB aircraft and demonstrate how computer based evacuation models can be used to investigage these issues through examination of aisle/exit configurations for BWB cabin layouts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper examines the influence of exit separation, exit availability and seating configuration on aircraft evacuation efficiency and evacuation time. The purpose of this analysis is to explore how these parameters influence the 60 foot exit separation requirement found in aircraft certification rules. The analysis makes use of the airEXODUS evacuation model and is based on a typical wide-body aircraft cabin section involving two pairs of Type-A exits located at either end of the section with a maximum permissible loading of 220 passengers located between the exits. The analysis reveals that there is a complex relationship between exit separation and evacuation efficiency. Indeed, other factors such as exit flow rate and exit availability are shown to exert a strong influence on critical exit separations. A main finding of this work is that for the cabin section examined under certification conditions, exit separations up to 170 feet will result in approximately constant total evacuation times and average personal evacuation times. This practical exit separation threshold is decreased to 114 feet if another combination of exits is selected. While other factors must also be considered when determining maximum allowable exit separations, these results suggest it is not possible to mandate a maximum exit separation without taking into consideration exit type, exit availability and aircraft configuration. This has implications when determining maximum allowable exit separations for wide and narrow body aircraft. It is also relevant when considering the maximum allowable separation between different exit types on a given aircraft configuration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When designing a new passenger ship or modifying an existing design, how do we ensure that the proposed design and crew emergency procedures are safe from an evacuation resulting from fire or other incident? In the wake of major maritime disasters such as the Scandinavian Star, Herald of Free Enterprise, Estonia and in light of the growth in the numbers of high density, high-speed ferries and large capacity cruise ships, issues concerning the evacuation of passengers and crew at sea are receiving renewed interest. Fire and evacuation models with features such as the ability to realistically simulate the spread of fire and fire suppression systems and the human response to fire as well as the capability to model human performance in heeled orientations linked to a virtual reality environment that produces realistic visualisations of the modelled scenarios are now available and can be used to aid the engineer in assessing ship design and procedures. This paper describes the maritimeEXODUS ship evacuation and the SMARTFIRE fire simulation model and provides an example application demonstrating the use of the models in performing fire and evacuation analysis for a large passenger ship partially based, but exceeding the requirements of MSC circular 1033.