2 resultados para Randomness
em Greenwich Academic Literature Archive - UK
Resumo:
Optimisation in wireless sensor networks is necessary due to the resource constraints of individual devices, bandwidth limits of the communication channel, relatively high probably of sensor failure, and the requirement constraints of the deployed applications in potently highly volatile environments. This paper presents BioANS, a protocol designed to optimise a wireless sensor network for resource efficiency as well as to meet a requirement common to a whole class of WSN applications - namely that the sensor nodes are dynamically selected on some qualitative basis, for example the quality by which they can provide the required context information. The design of BioANS has been inspired by the communication mechanisms that have evolved in natural systems. The protocol tolerates randomness in its environment, including random message loss, and incorporates a non-deterministic ’delayed-bids’ mechanism. A simulation model is used to explore the protocol’s performance in a wide range of WSN configurations. Characteristics evaluated include tolerance to sensor node density and message loss, communication efficiency, and negotiation latency .
Resumo:
This paper describes ways in which emergence engineering principles can be applied to the development of distributed applications. A distributed solution to the graph-colouring problem is used as a vehicle to illustrate some novel techniques. Each node acts autonomously to colour itself based only on its local view of its neighbourhood, and following a simple set of carefully tuned rules. Randomness breaks symmetry and thus enhances stability. The algorithm has been developed to enable self-configuration in wireless sensor networks, and to reflect real-world configurations the algorithm operates with 3 dimensional topologies (reflecting the propagation of radio waves and the placement of sensors in buildings, bridge structures etc.). The algorithm’s performance is evaluated and results presented. It is shown to be simultaneously highly stable and scalable whilst achieving low convergence times. The use of eavesdropping gives rise to low interaction complexity and high efficiency in terms of the communication overheads.