2 resultados para Proportions
em Greenwich Academic Literature Archive - UK
Resumo:
In attempts to conserve the species diversity of trees in tropical forests, monitoring of diversity in inventories is essential. For effective monitoring it is crucial to be able to make meaningful comparisons between different regions, or comparisons of the diversity of a region at different times. Many species diversity measures have been defined, including the well-known abundance and entropy measures. All such measures share a number of problems in their effective practical use. However, probably the most problematic is that they cannot be used to meaningfully assess changes, since thay are only concerned with the number of species or the proportions of the population/sample which they constitute. A natural (though simplistic) model of a species frequency distribution is the multinomial distribution. It is shown that the likelihood analysis of samples from such a distribution are closely related to a number of entropy-type measures of diversity. Hence a comparison of the species distribution on two plots, using the multinomial model and likelihood methods, leads to generalised cross-entropy as the LRT test statistic of the null that the species distributions are the same. Data from 30 contiguous plots in a forest in Sumatra are analysed using these methods. Significance tests between all pairs of plots yield extremely low p-values, indicating strongly that it ought to been "Obvious" that the observed species distributions are different on different plots. In terms of how different the plots are, and how these differences vary over the whole study site, a display of the degrees of freedom of the test, (equivalent to the number of shared species) seems to be the most revealing indicator, as well as the simplest.
Resumo:
Induction heating is an efficient method used to melt electrically conductive materials, particularly if melting takes place in a ceramic crucible. This form of melting is particularly good for alloys, as electromagnetic forces set up by the induction coil lead to vigorous stirring of the melt ensuring homogeneity and uniformity in temperature. However, for certain reactive alloys, or where high purity is required, ceramic crucibles cannot be used, but a water-cooled segmented copper crucible is employed instead. Water cooling prevents meltdown or distortion of the metal wall, but much of the energy goes into the coolant. To reduce this loss, the electromagnetic force generated by the coil is used to push the melt away from the walls and so minimise contact with water-cooled surfaces. Even then, heat is lost through the crucible base where contact is inevitable. In a collaborative programme between Greenwich and Birmingham Universities, computer modelling has been used in conjunction with experiments to improve the superheat attainable in the melt for a,number of alloys, especially for y-TiAl intermetallics to cast aeroengine turbine blades. The model solves the discretised form of the turbulent Navier-Stokes, thermal energy conservation and Maxwell equations using a Spectral Collocation technique. The time-varying melt envelope is followed explicitly during the computation using an adaptive mesh. This paper briefly describes the mathematical model used to represent the interaction between the magnetic field, fluid flow, heat transfer and change of phase in the crucible and identifies the proportions of energy used in the melt, lost in the crucible base and in the crucible walls. The role of turbulence is highlighted as important in controlling heat losses and turbulence damping is introduced as a means of improving superheat. Model validation is against experimental results and shows good agreement with measured temperatures and energy losses in the cooling fluid throughout the melting cycle.