2 resultados para Prognostic.

em Greenwich Academic Literature Archive - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a prognostic method which combines the physics of failure models with probability reasoning algorithm. The measured real time data (temperature vs. time) was used as the loading profile for the PoF simulations. The response surface equation of the accumulated plastic strain in the solder interconnect in terms of two variables (average temperature, and temperature amplitude) was constructed. This response surface equation was incorporated into the lifetime model of solder interconnect, and therefore the remaining life time of the solder component under current loading condition was predicted. The predictions from PoF models were also used to calculate the conditional probability table for a Bayesian Network, which was used to take into account of the impacts of the health observations of each product in lifetime prediction. The prognostic prediction in the end was expressed as the probability for the product to survive the expected future usage. As a demonstration, this method was applied to an IGBT power module used for aircraft applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes a framework that is being developed for the prediction and analysis of electronics power module reliability both for qualification testing and in-service lifetime prediction. Physics of failure (PoF) reliability methodology using multi-physics high-fidelity and reduced order computer modelling, as well as numerical optimization techniques, are integrated in a dedicated computer modelling environment to meet the needs of the power module designers and manufacturers as well as end-users for both design and maintenance purposes. An example of lifetime prediction for a power module solder interconnect structure is described. Another example is the lifetime prediction of a power module for a railway traction control application. Also in the paper a combined physics of failure and data trending prognostic methodology for the health monitoring of power modules is discussed.