27 resultados para Predecessor Existence Problem
em Greenwich Academic Literature Archive - UK
Resumo:
The concept of 'nested methods' is adopted to solve the location-routeing problem. Unlike the sequential and iterative approaches, in this method we treat the routeing element as a sub-problem within the larger problem of location. Efficient techniques that take into account the above concept and which use a neighbourhood structure inspired from computational geometry are presented. A simple version of tabu search is also embedded into our methods to improve the solutions further. Computational testing is carried out on five sets of problems of 400 customers with five levels of depot fixed costs, and the results obtained are encouraging.
Resumo:
The paper considers the open shop scheduling problem to minimize the make-span, provided that one of the machines has to process the jobs according to a given sequence. We show that in the preemptive case the problem is polynomially solvable for an arbitrary number of machines. If preemption is not allowed, the problem is NP-hard in the strong sense if the number of machines is variable, and is NP-hard in the ordinary sense in the case of two machines. For the latter case we give a heuristic algorithm that runs in linear time and produces a schedule with the makespan that is at most 5/4 times the optimal value. We also show that the two-machine problem in the nonpreemptive case is solvable in pseudopolynomial time by a dynamic programming algorithm, and that the algorithm can be converted into a fully polynomial approximation scheme. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 705–731, 1998
Resumo:
In this paper the many to many location routing problem is introduced, and its relationship to various problems in distribution management is emphasised. Useful mathematical formulations which can be easily extended to cater for other related problems are produced. Techniques for tackling this complex distribution problem are also outlined.
Resumo:
The main interest in the assessment of forest species diversity for conservation purposes is in the rare species. The main problem in the tropical rain forests is that most of the species are rare. Assessment of species diversity in the tropical rain forests is therefore often concerned with estimating that which is not observed in recorded samples. Statistical methodology is therefore required to try to estimate the truncated tail of the species frequency distribution, or to estimate the asymptote of species/diversity-area curves. A Horvitz-Thompson estimator of the number of unobserved (“virtual”) species in each species intensity class is proposed. The approach allows a definition of an extended definition of diversity, ( or generalised Renyi entropy). The paper presents a case study from data collected in Jambi, Sumatra, and the “extended diversity measure” is used on the species data.
Resumo:
The key problems in discussing stochastic monotonicity and duality for continuous time Markov chains are to give the criteria for existence and uniqueness and to construct the associated monotone processes in terms of their infinitesimal q -matrices. In their recent paper, Chen and Zhang [6] discussed these problems under the condition that the given q-matrix Q is conservative. The aim of this paper is to generalize their results to a more general case, i.e., the given q-matrix Q is not necessarily conservative. New problems arise 'in removing the conservative assumption. The existence and uniqueness criteria for this general case are given in this paper. Another important problem, the construction of all stochastically monotone Q-processes, is also considered.
Resumo:
Attention has recently focussed on stochastic population processes that can undergo total annihilation followed by immigration into state j at rate αj. The investigation of such models, called Markov branching processes with instantaneous immigration (MBPII), involves the study of existence and recurrence properties. However, results developed to date are generally opaque, and so the primary motivation of this paper is to construct conditions that are far easier to apply in practice. These turn out to be identical to the conditions for positive recurrence, which are very easy to check. We obtain, as a consequence, the surprising result that any MBPII that exists is ergodic, and so must possess an equilibrium distribution. These results are then extended to more general MBPII, and we show how to construct the associated equilibrium distributions.
Resumo:
The paper considers the job shop scheduling problem to minimize the makespan. It is assumed that each job consists of at most two operations, one of which is to be processed on one of m⩾2 machines, while the other operation must be performed on a single bottleneck machine, the same for all jobs. For this strongly NP-hard problem we present two heuristics with improved worst-case performance. One of them guarantees a worst-case performance ratio of 3/2. The other algorithm creates a schedule with the makespan that exceeds the largest machine workload by at most the length of the largest operation.
Resumo:
This paper studies the problem of scheduling jobs in a two-machine open shop to minimize the makespan. Jobs are grouped into batches and are processed without preemption. A batch setup time on each machine is required before the first job is processed, and when a machine switches from processing a job in some batch to a job of another batch. For this NP-hard problem, we propose a linear-time heuristic algorithm that creates a group technology schedule, in which no batch is split into sub-batches. We demonstrate that our heuristic is a -approximation algorithm. Moreover, we show that no group technology algorithm can guarantee a worst-case performance ratio less than 5/4.
Resumo:
This paper considers the problem of processing n jobs in a two-machine non-preemptive open shop to minimize the makespan, i.e., the maximum completion time. One of the machines is assumed to be non-bottleneck. It is shown that, unlike its flow shop counterpart, the problem is NP-hard in the ordinary sense. On the other hand, the problem is shown to be solvable by a dynamic programming algorithm that requires pseudopolynomial time. The latter algorithm can be converted into a fully polynomial approximation scheme that runs in time. An O(n log n) approximation algorithm is also designed whi finds a schedule with makespan at most 5/4 times the optimal value, and this bound is tight.
Resumo:
The paper considers a problem of scheduling n jobs in a two-machine open shop to minimize the makespan, provided that preemption is not allowed and the interstage transportation times are involved. This problem is known to be unary NP-hard. We present an algorithm that requires O (n log n) time and provides a worst-case performance ratio of 3/2.
Resumo:
The key problems in discussing duality and monotonicity for continuous-time Markov chains are to find conditions for existence and uniqueness and then to construct corresponding processes in terms of infinitesimal characteristics, i.e., q-matrices. Such problems are solved in this paper under the assumption that the given q-matrix is conservative. Some general properties of stochastically monotone Q-process ( Q is not necessarily conservative) are also discussed.
Resumo:
A Feller–Reuter–Riley function is a Markov transition function whose corresponding semigroup maps the set of the real-valued continuous functions vanishing at infinity into itself. The aim of this paper is to investigate applications of such functions in the dual problem, Markov branching processes, and the Williams-matrix. The remarkable property of a Feller–Reuter–Riley function is that it is a Feller minimal transition function with a stable q-matrix. By using this property we are able to prove that, in the theory of branching processes, the branching property is equivalent to the requirement that the corresponding transition function satisfies the Kolmogorov forward equations associated with a stable q-matrix. It follows that the probabilistic definition and the analytic definition for Markov branching processes are actually equivalent. Also, by using this property, together with the Resolvent Decomposition Theorem, a simple analytical proof of the Williams' existence theorem with respect to the Williams-matrix is obtained. The close link between the dual problem and the Feller–Reuter–Riley transition functions is revealed. It enables us to prove that a dual transition function must satisfy the Kolmogorov forward equations. A necessary and sufficient condition for a dual transition function satisfying the Kolmogorov backward equations is also provided.
Resumo:
In this paper, we study a problem of scheduling and batching on two machines in a flow-shop and open-shop environment. Each machine processes operations in batches, and the processing time of a batch is the sum of the processing times of the operations in that batch. A setup time, which depends only on the machine, is required before a batch is processed on a machine, and all jobs in a batch remain at the machine until the entire batch is processed. The aim is to make batching and sequencing decisions, which specify a partition of the jobs into batches on each machine, and a processing order of the batches on each machine, respectively, so that the makespan is minimized. The flow-shop problem is shown to be strongly NP-hard. We demonstrate that there is an optimal solution with the same batches on the two machines; we refer to these as consistent batches. A heuristic is developed that selects the best schedule among several with one, two, or three consistent batches, and is shown to have a worst-case performance ratio of 4/3. For the open-shop, we show that the problem is NP-hard in the ordinary sense. By proving the existence of an optimal solution with one, two or three consistent batches, a close relationship is established with the problem of scheduling two or three identical parallel machines to minimize the makespan. This allows a pseudo-polynomial algorithm to be derived, and various heuristic methods to be suggested.