15 resultados para Power Electronics, UPFC, Closed Loop

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Power electronic modules distinguish themselves from other modules by their high power operation. These modules are used extensively in high power application markets such as aerospace, automotive, industrial and traction and drives. This paper discusses typical packaging technologies for power electronics modules. It also discusses the latest results from a UK research project investigating the physics-of-failure approach to reliability analysis and predictions for power modules. An integrated design enviroment for incorporating of affects of uncertainty into the design environment was outlined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses the reliability of power electronics modules. The approach taken combines numerical modeling techniques with experimentation and accelerated testing to identify failure modes and mechanisms for the power module structure and most importantly the root cause of a potential failure. The paper details results for two types of failure (i) wire bond fatigue and (ii) substrate delamination. Finite element method modeling techniques have been used to predict the stress distribution within the module structures. A response surface optimisation approach has been employed to enable the optimal design and parameter sensitivity to be determined. The response surface is used by a Monte Carlo method to determine the effects of uncertainty in the design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical modeling method for the prediction of the lifetime of solder joints of relatively large solder area under cyclic thermal-mechanical loading conditions has been developed. The method is based on the Miner's linear damage accumulation rule and the properties of the accumulated plastic strain in front of the crack in large area solder joint. The nonlinear distribution of the damage indicator in the solder joints have been taken into account. The method has been used to calculate the lifetime of the solder interconnect in a power module under mixed cyclic loading conditions found in railway traction control applications. The results show that the solder thickness is a parameter that has a strong influence on the damage and therefore the lifetime of the solder joint while the substrate width and the thickness of the baseplate are much less important for the lifetime

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optimal design of a power electronics module isolation substrate is assessed using a combination of finite element structural mechanics analysis and response surface optimisation technique. Primary failure modes in power electronics modules include the loss of structural integrity in the ceramic substrate materials due to stresses induced through thermal cycling. Analysis of the influence of ceramic substrate design parameters is undertaken using a design of experiments approach. Finite element analysis is used to determine the stress distribution for each design, and the results are used to construct a quadratic response surface function. A particle swarm optimisation algorithm is then used to determine the optimal substrate design. Analysis of response surface function gradients is used to perform sensitivity analysis and develop isolation substrate design rules. The influence of design uncertainties introduced through manufacturing tolerances is assessed using a Monte-Carlo algorithm, resulting in a stress distribution histogram. The probability of failure caused by the violation of design constraints has been analyzed. Six geometric design parameters are considered in this work and the most important design parameters have been identified. Overall analysis results can be used to enhance the design and reliability of the component.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a prognostic method which combines the physics of failure models with probability reasoning algorithm. The measured real time data (temperature vs. time) was used as the loading profile for the PoF simulations. The response surface equation of the accumulated plastic strain in the solder interconnect in terms of two variables (average temperature, and temperature amplitude) was constructed. This response surface equation was incorporated into the lifetime model of solder interconnect, and therefore the remaining life time of the solder component under current loading condition was predicted. The predictions from PoF models were also used to calculate the conditional probability table for a Bayesian Network, which was used to take into account of the impacts of the health observations of each product in lifetime prediction. The prognostic prediction in the end was expressed as the probability for the product to survive the expected future usage. As a demonstration, this method was applied to an IGBT power module used for aircraft applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical modelling method for the analysis of solder joint damage and crack propagation has been described in this paper. The method is based on the disturbed state concept. Under cyclic thermal-mechanical loading conditions, the level of damage that occurs in solder joints is assumed to be a simple monotonic scalar function of the accumulated equivalent plastic strain. The increase of damage leads to crack initiation and propagation. By tracking the evolution of the damage level in solder joints, crack propagation path and rate can be simulated using Finite Element Analysis method. The discussions are focused on issues in the implementation of the method. The technique of speeding up the simulation and the mesh dependency issues are analysed. As an example of the application of this method, crack propagation in solder joints of power electronics modules under cyclic thermal-mechanical loading conditions has been analyzed and the predicted cracked area size after 3000 loading cycles is consistent with experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, computer modelling techniques are used to analyse the effects of globtops on the reliability of aluminium wirebonds in power electronics modules under cyclic thermal-mechanical loading conditions. The sensitivity of the wirehond reliability to the changes of the geometric and the material property parameters of wirebond globtop are evaluated and the optimal combination of the Young's modulus and the coefficient of thermal expansion have been predicted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of an innovative jet impingement cooling system in a power electronics application is investigated using numerical analysis. The jet impingement system, outlined by Skuriat et al, consists of a series of cells each containing an array of holes. Cooling fluid is forced through the device, forming an array of impingement jets. The jets are arranged in a manner, which induces a high degree of mixing in the interface boundary layer. This increase in turbulent mixing is intended to induce higher Nusselt numbers and effective heat transfer coefficients. Enhanced cooling efficiency enables the power electronics module to operate at a lower temperature, greatly enhancing long-term reliability. The results obtained through numerical modelling deviates markedly from the experimentally derived data. The disparity is most likely due to the turbulence model selected and further analysis is required, involving evaluation of more advanced turbulence models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electric car, the all electric aircraft and requirements for renewable energy are examples of potential technologies needed to address the world problem of global warming/carbon emission etc. Power electronics and packaged modules are fundamental for the underpinning of these technologies and with the diverse requirements for electrical configurations and the range of environmental conditions, time to market is paramount for module manufacturers and systems designers alike. This paper details some of the results from a major UK project into the reliability of power electronic modules using physics of failure techniques. This paper presents a design methodology together with results that demonstrate enhanced product design with improved reliability, performance and value within acceptable time scales

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses the reliability of an IGBT power electronics module. This work is part of a major UK funded initiative into the design, packaging and reliability of power electronic modules. The predictive methodology combines numerical modeling techniques with experimentation and accelerated testing to identify failure modes and mechanisms for these type of power electronic module structures. The paper details results for solder joint failure substrate solder. Finite element method modeling techniques have been used to predict the stress and strain distribution within the module structures. Together with accelerated life testing, these results have provided a failure model for these joints which has been used to predict reliability of a rail traction application

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel open waveguide cavity resonator is presented for the combined variable frequency microwave curing of bumps, underfills and encapsulants, as well as the alignment of devices for fast flip-chip assembly, direct chip attach (DCA) or wafer-scale level packaging (WSLP). This technology achieves radio frequency (RF) curing of adhesives used in microelectronics, optoelectronics and medical devices with potential simultaneous micron-scale alignment accuracy and bonding of devices. In principle, the open oven cavity can be fitted directly onto a flip-chip or wafer scale bonder and, as such, will allow for the bonding of devices through localised heating thus reducing the risk to thermally sensitive devices. Variable frequency microwave (VFM) heating and curing of an idealised polymer load is numerically simulated using a multi-physics approach. Electro-magnetic fields within a novel open ended microwave oven developed for use in micro-electronics manufacturing applications are solved using a dedicated Yee scheme finite-difference time-domain (FDTD) solver. Temperature distribution, degree of cure and thermal stresses are analysed using an Unstructured Finite Volume method (UFVM) multi-physics package. The polymer load was meshed for thermophysical analysis, whilst the microwave cavity - encompassing the polymer load - was meshed for microwave irradiation. The two solution domains are linked using a cross mapping routine. The principle of heating using the evanescent fringing fields within the open-end of the cavity is demonstrated. A closed loop feedback routine is established allowing the temperature within a lossy sample to be controlled. A distribution of the temperature within the lossy sample is obtained by using a thermal imaging camera.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The article consists of a PowerPoint presentation on integrated reliability and prognostics prediction methodology for power electronic modules. The areas discussed include: power electronics flagship; design for reliability; IGBT module; design for manufacture; power module components; reliability prediction techniques; failure based reliability; etc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a framework that is being developed for the prediction and analysis of electronics power module reliability both for qualification testing and in-service lifetime prediction. Physics of failure (PoF) reliability methodology using multi-physics high-fidelity and reduced order computer modelling, as well as numerical optimization techniques, are integrated in a dedicated computer modelling environment to meet the needs of the power module designers and manufacturers as well as end-users for both design and maintenance purposes. An example of lifetime prediction for a power module solder interconnect structure is described. Another example is the lifetime prediction of a power module for a railway traction control application. Also in the paper a combined physics of failure and data trending prognostic methodology for the health monitoring of power modules is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electric car, the all electric aircraft and requirements for renewable energy are prime examples of potential technologies needing to be addressed in the world problem of global warming/carbon emission etc. Power electronics are fundamental for the underpinning of these technologies and with the diverse requirements for electrical configurations and the range of environmental conditions, time to market is paramount for module manufacturers and systems designers alike. This paper presents a 'virtual' design methodology together with theoretical and experimental results that demonstrate enhanced product design with improved reliability, performance and cost value within competitive schemes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In power electronics modules, heavy aluminium wires, i.e. wire diameters greater than 100 microns, are bonded to the active semiconductor devices and conductor metallization to form electric circuits of the power electronic module. Due to the high currents that may flow through these wires, a single connection usually contains several wires and thus, a large number of wires are used in a power electronics module. Under normal operation or test condition, a significant amount of stresses and strains induced in the wire and bonding interfaces, resulting in failure over time. In this paper, computer modelling techniques are used to analyse the effect of globtop design on the reliability of aluminium wirebonds under cyclic thermal-mechanical loading conditions. The results will show the sensitivity of the reliability of the wirebonds to the changes in the geometry and the material properties of the wirebond globtop.