2 resultados para Power Differential Scale
em Greenwich Academic Literature Archive - UK
Resumo:
A new multi-scale model of brittle fracture growth in an Ag plate with macroscopic dimensions is proposed in which the crack propagation is identified with the stochastic drift-diffusion motion of the crack-tip atom through the material. The model couples molecular dynamics simulations, based on many-body interatomic potentials, with the continuum-based theories of fracture mechanics. The Ito stochastic differential equation is used to advance the tip position on a macroscopic scale before each nano-scale simulation is performed. Well-known crack characteristics, such as the roughening transitions of the crack surfaces, as well as the macroscopic crack trajectories are obtained.
Resumo:
The space–time dynamics of rigid inhomogeneities (inclusions) free to move in a randomly fluctuating fluid bio-membrane is derived and numerically simulated as a function of the membrane shape changes. Both vertically placed (embedded) inclusions and horizontally placed (surface) inclusions are considered. The energetics of the membrane, as a two-dimensional (2D) meso-scale continuum sheet, is described by the Canham–Helfrich Hamiltonian, with the membrane height function treated as a stochastic process. The diffusion parameter of this process acts as the link coupling the membrane shape fluctuations to the kinematics of the inclusions. The latter is described via Ito stochastic differential equation. In addition to stochastic forces, the inclusions also experience membrane-induced deterministic forces. Our aim is to simulate the diffusion-driven aggregation of inclusions and show how the external inclusions arrive at the sites of the embedded inclusions. The model has potential use in such emerging fields as designing a targeted drug delivery system.