16 resultados para Polynomial time hierarchy

em Greenwich Academic Literature Archive - UK


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We develop a fully polynomial-time approximation scheme (FPTAS) for minimizing the weighted total tardiness on a single machine, provided that all due dates are equal. The FPTAS is obtained by converting an especially designed pseudopolynomial dynamic programming algorithm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The paper considers a scheduling model that generalizes the well-known open shop, flow shop, and job shop models. For that model, called the super shop, we study the complexity of finding a time-optimal schedule in both preemptive and non-preemptive cases assuming that precedence constraints are imposed over the set of jobs. Two types of precedence rela-tions are considered. Most of the arising problems are proved to be NP-hard, while for some of them polynomial-time algorithms are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper studies two models of two-stage processing with no-wait in process. The first model is the two-machine flow shop, and the other is the assembly model. For both models we consider the problem of minimizing the makespan, provided that the setup and removal times are separated from the processing times. Each of these scheduling problems is reduced to the Traveling Salesman Problem (TSP). We show that, in general, the assembly problem is NP-hard in the strong sense. On the other hand, the two-machine flow shop problem reduces to the Gilmore-Gomory TSP, and is solvable in polynomial time. The same holds for the assembly problem under some reasonable assumptions. Using these and existing results, we provide a complete complexity classification of the relevant two-stage no-wait scheduling models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Given a relation α (a binary sociogram) and an a priori equivalence relation π, both on the same set of individuals, it is interesting to look for the largest equivalence πo that is contained in and is regular with respect to α. The equivalence relation πo is called the regular interior of π with respect to α. The computation of πo involves the left and right residuals, a concept that generalized group inverses to the algebra of relations. A polynomial-time procedure is presented (Theorem 11) and illustrated with examples. In particular, the regular interior gives meet in the lattice of regular equivalences: the regular meet of regular equivalences is the regular interior of their intersection. Finally, the concept of relative regular equivalence is defined and compared with regular equivalence.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper examines scheduling problems in which the setup phase of each operation needs to be attended by a single server, common for all jobs and different from the processing machines. The objective in each situation is to minimize the makespan. For the processing system consisting of two parallel dedicated machines we prove that the problem of finding an optimal schedule is NP-hard in the strong sense even if all setup times are equal or if all processing times are equal. For the case of m parallel dedicated machines, a simple greedy algorithm is shown to create a schedule with the makespan that is at most twice the optimum value. For the two machine case, an improved heuristic guarantees a tight worst-case ratio of 3/2. We also describe several polynomially solvable cases of the later problem. The two-machine flow shop and the open shop problems with a single server are also shown to be NP-hard in the strong sense. However, we reduce the two-machine flow shop no-wait problem with a single server to the Gilmore-Gomory traveling salesman problem and solve it in polynomial time. (c) 2000 John Wiley & Sons, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is known that for the open shop scheduling problem to minimize the makespan there exists no polynomial-time heuristic algorithm that guarantees a worst-case performance ratio better than 5/4, unless P6≠NP. However, this result holds only if the instance of the problem contains jobs consisting of at least three operations. This paper considers the open shop scheduling problem, provided that each job consists of at most two operations, one of which is to be processed on one of the m⩾2 machines, while the other operation must be performed on the bottleneck machine, the same for all jobs. For this NP-hard problem we present a heuristic algorithm and show that its worst-case performance ratio is 5/4.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The scheduling problem of minimizing the makespan for m parallel dedicated machines under single resource constraints is considered. For different variants of the problem the complexity status is established. Heuristic algorithms employing the so-called group technology approach are presented and their worst-case behavior is examined. Finally, a polynomial time approximation scheme is presented for the problem with fixed number of machines.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The paper considers scheduling problems for parallel dedicated machines subject to resource constraints. A fairly complete computational complexity classification is obtained, a number of polynomial-time algorithms are designed. For the problem with a fixed number of machines in which a job uses at most one resource of unit size a polynomial-time approximation scheme is offered.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper considers a variant of the classical problem of minimizing makespan in a two-machine flow shop. In this variant, each job has three operations, where the first operation must be performed on the first machine, the second operation can be performed on either machine but cannot be preempted, and the third operation must be performed on the second machine. The NP-hard nature of the problem motivates the design and analysis of approximation algorithms. It is shown that a schedule in which the operations are sequenced arbitrarily, but without inserted machine idle time, has a worst-case performance ratio of 2. Also, an algorithm that constructs four schedules and selects the best is shown to have a worst-case performance ratio of 3/2. A polynomial time approximation scheme (PTAS) is also presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we provide a fairly complete complexity classification of various versions of the two-machine permutation flow shop scheduling problem to minimize the makespan in which some of the jobs have to be processed with no-wait in process. For some version, we offer a fully polynomial-time approximation scheme and a 43-approximation algorithm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider a knapsack problem to minimize a symmetric quadratic function. We demonstrate that this symmetric quadratic knapsack problem is relevant to two problems of single machine scheduling: the problem of minimizing the weighted sum of the completion times with a single machine non-availability interval under the non-resumable scenario; and the problem of minimizing the total weighted earliness and tardiness with respect to a common small due date. We develop a polynomial-time approximation algorithm that delivers a constant worst-case performance ratio for a special form of the symmetric quadratic knapsack problem. We adapt that algorithm to our scheduling problems and achieve a better performance. For the problems under consideration no fixed-ratio approximation algorithms have been previously known.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Single machine scheduling problems are considered, in which the processing of jobs depend on positions of the jobs in a schedule and the due-dates are assigned either according to the CON rule (a due-date common to all jobs is chosen) or according to the SLK rule (the due-dates are computed by increasing the actual processing times of each job by a slack, common to all jobs). Polynomial-time dynamic programming algorithms are proposed for the problems with the objective functions that include the cost of assigning the due-dates, the total cost of disgarded jobs (which are not scheduled) and, possibly, the total earliness of the scheduled jobs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper considers two-machine flow shop scheduling problems with machine availability constraints. When the processing of a job is interrupted by an unavailability period of a machine, we consider both the resumable scenario in which the processing can be resumed when the machine next becomes available, and the semi-resumable scenario in which some portion of the processing is repeated but the job is otherwise resumable. For the problem with several non-availability intervals on the first machine under the resumable scenario, we present a fast (3/2)-approximation algorithm. For the problem with one non-availability interval under the semi-resumable scenario, a polynomial-time approximation scheme is developed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider single machine scheduling and due date assignment problems in which the processing time of a job depends on its position in a processing sequence. The objective functions include the cost of changing the due dates, the total cost of discarded jobs that cannot be completed by their due dates and, possibly, the total earliness of the scheduled jobs. We present polynomial-time dynamic programming algorithms in the case of two popular due date assignment methods: CON and SLK. The considered problems are related to mathematical models of cooperation between the manufacturer and the customer in supply chain scheduling.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the scheduling literature, the notion of machine non availability periods is well known, for instance for maintenance. In our case of planning chemical experiments, we have special periods (the week-ends, holidays, vacations) where the chemists are not available. However, human intervention by the chemists is required to handle the starting and termination of the experiments. This gives rise to a new type of scheduling problems, namely problems of finding schedules that respect the operator non availability periods. These problems are analyzed on a single machine with the makespan as criterion. Properties are described and performance ratios are given for list scheduling and other polynomial-time algorithms.