33 resultados para Poisson processes
em Greenwich Academic Literature Archive - UK
Resumo:
The problems encountered when using traditional rectangular pulse hierarchical point processmodels for fine temporal resolution and the growing number of available tip-time records suggest that rainfall increments from tipping-bucket gauges be modelled directly. Poisson processes are used with an arrival rate modulated by a Markov chain in Continuous time. The paper shows how, by using two or three states for this chain, much of the structure of the rainfall intensity distribution and the wet/dry sequences can be represented for time-scales as small as 5 minutes.
Resumo:
This note provides a new probabilistic approach in discussing the weighted Markov branching process (WMBP) which is a natural generalisation of the ordinary Markov branching process. Using this approach, some important characteristics regarding the hitting times of such processes can be easily obtained. In particular, the closed forms for the mean extinction time and conditional mean extinction time are presented. The explosion behaviour of the process is investigated and the mean explosion time is derived. The mean global holding time and the mean total survival time are also obtained. The close link between these newly developed processes and the well-known compound Poisson processes is investigated. It is revealed that any weighted Markov branching process (WMBP) is a random time change of a compound Poisson process.
Resumo:
A discretized series of events is a binary time series that indicates whether or not events of a point process in the line occur in successive intervals. Such data are common in environmental applications. We describe a class of models for them, based on an unobserved continuous-time discrete-state Markov process, which determines the rate of a doubly stochastic Poisson process, from which the binary time series is constructed by discretization. We discuss likelihood inference for these processes and their second-order properties and extend them to multiple series. An application involves modeling the times of exposures to air pollution at a number of receptors in Western Europe.
Resumo:
We study two marked point process models based on the Cox process. These models are used to describe the probabilistic structure of the rainfall intensity process. Mathematical formulation of the models is described and some second-moment characteristics of the rainfall depth, and aggregated processes are considered. The derived second-order properties of the accumulated rainfall amounts at different levels of aggregation are used in order to examine the model fit. A brief data analysis is presented. Copyright © 1998 John Wiley & Sons, Ltd.
Resumo:
The manufacture of materials products involves the control of a range of interacting physical phenomena. The material to be used is synthesised and then manipulated into some component form. The structure and properties of the final component are influenced by both interactions of continuum-scale phenomena and those at an atomistic-scale level. Moreover, during the processing phase there are some properties that cannot be measured (typically the liquid-solid phase change). However, it seems there is a potential to derive properties and other features from atomistic-scale simulations that are of key importance at the continuum scale. Some of the issues that need to be resolved in this context focus upon computational techniques and software tools facilitating: (i) the multiphysics modeling at continuum scale; (ii) the interaction and appropriate degrees of coupling between the atomistic through microstructure to continuum scale; and (iii) the exploitation of high-performance parallel computing power delivering simulation results in a practical time period. This paper discusses some of the attempts to address each of the above issues, particularly in the context of materials processing for manufacture.
Resumo:
The demands of the process of engineering design, particularly for structural integrity, have exploited computational modelling techniques and software tools for decades. Frequently, the shape of structural components or assemblies is determined to optimise the flow distribution or heat transfer characteristics, and to ensure that the structural performance in service is adequate. From the perspective of computational modelling these activities are typically separated into: • fluid flow and the associated heat transfer analysis (possibly with chemical reactions), based upon Computational Fluid Dynamics (CFD) technology • structural analysis again possibly with heat transfer, based upon finite element analysis (FEA) techniques.
Resumo:
The space–time dynamics of rigid inhomogeneities (inclusions) free to move in a randomly fluctuating fluid bio-membrane is derived and numerically simulated as a function of the membrane shape changes. Both vertically placed (embedded) inclusions and horizontally placed (surface) inclusions are considered. The energetics of the membrane, as a two-dimensional (2D) meso-scale continuum sheet, is described by the Canham–Helfrich Hamiltonian, with the membrane height function treated as a stochastic process. The diffusion parameter of this process acts as the link coupling the membrane shape fluctuations to the kinematics of the inclusions. The latter is described via Ito stochastic differential equation. In addition to stochastic forces, the inclusions also experience membrane-induced deterministic forces. Our aim is to simulate the diffusion-driven aggregation of inclusions and show how the external inclusions arrive at the sites of the embedded inclusions. The model has potential use in such emerging fields as designing a targeted drug delivery system.
Resumo:
A birth-death process is subject to mass annihilation at rate β with subsequent mass immigration occurring into state j at rateα j . This structure enables the process to jump from one sector of state space to another one (via state 0) with transition rate independent of population size. First, we highlight the difficulties encountered when using standard techniques to construct both time-dependent and equilibrium probabilities. Then we show how to overcome such analytic difficulties by means of a tool developed in Chen and Renshaw (1990, 1993b); this approach is applicable to many processes whose underlying generator on E\{0} has known probability structure. Here we demonstrate the technique through application to the linear birth-death generator on which is superimposed an annihilation/immigration process.
Resumo:
Attention has recently focussed on stochastic population processes that can undergo total annihilation followed by immigration into state j at rate αj. The investigation of such models, called Markov branching processes with instantaneous immigration (MBPII), involves the study of existence and recurrence properties. However, results developed to date are generally opaque, and so the primary motivation of this paper is to construct conditions that are far easier to apply in practice. These turn out to be identical to the conditions for positive recurrence, which are very easy to check. We obtain, as a consequence, the surprising result that any MBPII that exists is ergodic, and so must possess an equilibrium distribution. These results are then extended to more general MBPII, and we show how to construct the associated equilibrium distributions.
Resumo:
The key problems in discussing duality and monotonicity for continuous-time Markov chains are to find conditions for existence and uniqueness and then to construct corresponding processes in terms of infinitesimal characteristics, i.e., q-matrices. Such problems are solved in this paper under the assumption that the given q-matrix is conservative. Some general properties of stochastically monotone Q-process ( Q is not necessarily conservative) are also discussed.
Resumo:
In this paper, the framework is described for the modelling of granular material by employing Computational Fluid Dynamics (CFD). This is achieved through the use and implementation in the continuum theory of constitutive relations, which are derived in a granular dynamics framework and parametrise particle interactions that occur at the micro-scale level. The simulation of a process often met in bulk solids handling industrial plants involving granular matter, (i.e. filling of a flat-bottomed bin with a binary material mixture through pneumatic conveying-emptying of the bin in core flow mode-pneumatic conveying of the material coming out of a the bin) is presented. The results of the presented simulation demonstrate the capability of the numerical model to represent successfully key granular processes (i.e. segregation/degradation), the prediction of which is of great importance in the process engineering industry.
Resumo:
The computational modelling of metal forming processes is now well established. In this work