3 resultados para Poisson Mixed Model
em Greenwich Academic Literature Archive - UK
Resumo:
The problems encountered when using traditional rectangular pulse hierarchical point processmodels for fine temporal resolution and the growing number of available tip-time records suggest that rainfall increments from tipping-bucket gauges be modelled directly. Poisson processes are used with an arrival rate modulated by a Markov chain in Continuous time. The paper shows how, by using two or three states for this chain, much of the structure of the rainfall intensity distribution and the wet/dry sequences can be represented for time-scales as small as 5 minutes.
Resumo:
Of key importance to oil and gas companies is the size distribution of fields in the areas that they are drilling. Recent arguments suggest that there are many more fields yet to be discovered in mature provinces than had previously been thought because the underlying distribution is monotonic not peaked. According to this view the peaked nature of the distribution for discovered fields reflects not the underlying distribution but the effect of economic truncation. This paper contributes to the discussion by analysing up-to-date exploration and discovery data for two mature provinces using the discovery-process model, based on sampling without replacement and implicitly including economic truncation effects. The maximum likelihood estimation involved generates a high-dimensional mixed-integer nonlinear optimization problem. A highly efficient solution strategy is tested, exploiting the separable structure and handling the integer constraints by treating the problem as a masked allocation problem in dynamic programming.
Resumo:
In this paper a mixed Eulerian-Lagrangian approach for the modelling metal extrusion processes is presented. The approach involves the solution of non-Newtonian fluid flow equations in an Eulerian context, using a free-surface algorithm to track the behaviour of the workpiece and its extrusion. The solid mechanics equations associated with the tools are solved in Lagangrian context. Thermal interactions between the workpiece are modelled and a fluid-structure interaction technique is employed to model the effect of the fluid traction load imposed by the workpiece on the tools. Two extrusion test cases are investigated and the results obtained show the potential of the model with regard to representing the physics of the process and the simulation time.