5 resultados para Pitch modification
em Greenwich Academic Literature Archive - UK
Resumo:
This paper discusses results from a highly interdisciplinary research project which investigated different packaging options for ultra-fine pitch, low temperature and low cost flip-chip assembly. Isotropic Conductive Adhesives (ICAs) are stencil printed to form the interconnects for the package. ICAs are utilized to ensure a low temperature assembly process of flip-chip copper column bumped packages. Results are presented on the structural integrity of novel electroformed stencils. ICA deposits at sub-100 micron pitch and the subsequent thermo-mechanical behaviour of the flip-chip ICA joints are analysed using numerical modelling techniques. Optimal design rules for enhanced performance and thermomechanical reliability of ICA assembled flip-chip packages are formulated.
Resumo:
This article presents the latest print results at less than 100 microns pitch obtained in stencil printing type 6 and 7 lead-free solder pastes and conductive adhesives. The advantages of the microengineered stencil arc presented and compared with other bonding technologies. Characterisation of the print deposits is presented and future applications of stencil printing are described.
Resumo:
This article presents the latest print results at less than 100 microns pitch obtained in stencil printing type 6 and 7 leadfree solder pastes and conductive adhesives. The advantages of the microengineered stencil are presented and compared with other bonding technologies. Characterisation of the print deposits is presented and future applications of stencil printing are described.
Resumo:
This paper presents the assembly process using next generation electroformed stencils and Isotropic Conductive Adhesives (ICAs) as interconnection material. The utilisation of ICAs in flip-chip assembly process is investigated as an alternative to the lead and lead-free solder alloys and aims to ensure a low temperature (T < 100 °C) assembly process. The paper emphasizes and discusses in details the assembly of a flip-chip package based on copper columns bumped die and substrate with stencil printed ICA deposits at sub-100 μm pitch. A computational modelling approach is undertaken to provide comprehensive results on reliability trends of ICA joints subject to thermal cycling of the flip-chip assembly based on easy to use damage criteria and damage evaluation. Important design parameters in the package are selected and investigated using numerical modelling techniques to provide knowledge and understanding of their impact on the thermo-mechanical behaviour of the flip-chip ICA joints. Sensitivity analysis of the damage in the adhesive material is also carried out. Optimal design rules for enhanced performance and improved thermo-mechanical reliability of ICA assembled flip-chip packages are finally formulated.
Resumo:
This paper presents the results of a packaging process based on the stencil printing of isotropic conductive adhesives (ICAs) that form the interconnections of flip-chip bonded electronic packages. Ultra-fine pitch (sub-100-mum), low temperature (100degC), and low cost flip-chip assembly is demonstrated. The article details recent advances in electroformed stencil manufacturing that use microengineering techniques to enable stencil fabrication at apertures sizes down to 20mum and pitches as small as 30mum. The current state of the art for stencil printing of ICAs and solder paste is limited between 150-mum and 200-mum pitch. The ICAs-based interconnects considered in this article have been stencil printed successfully down to 50-mum pitch with consistent printing demonstrated at 90-mum pitch size. The structural integrity or the stencil after framing and printing is also investigated through experimentation and computational modeling. The assembly of a flip-chip package based on copper column bumped die and ICA deposits stencil printed at sub-100-mum pitch is described. Computational fluid dynamics modeling of the print performance provides an indicator on the optimum print parameters. Finally, an organic light emitting diode display chip is packaged using this assembly process