4 resultados para Photovoltaic converters
em Greenwich Academic Literature Archive - UK
Resumo:
The recovery of platinum group metals (PGMs) from catalytic converters of spent exhaust systems is considered in this paper. To be cost-effective, recovery processes must be well over 90% efficient and so the optimisation of their operation is vital. Effective optimisation requires a sound understanding of the operation and the underlying process mechanisms. This paper focuses on pyrometallurgical recovery operations used and typified by the Johnson–Matthey process. Analysis of this process reveals that it cannot be simply explained by the gravity model that is normally assumed. The analysis reveals that the affinity of PGM particles for the melted collector metal is a key factor in the behaviour of the process. A rational explanation of the key issues that govern the process behaviour is proposed and shown to be consistent with available operational data. The results generated would be applicable to other similar processes.
Resumo:
A commercial pyrometallurgical process for the extraction of platinum-group metals (PGM) from a feedstock slag was analysed with the use of a model based on computational fluid dynamics. The results of the modelling indicate that recovery depends on the behaviour of the collector phase. A possible method is proposed for estimation of the rate at which PGM particles in slag are absorbed into an iron collector droplet that falls through it. Nanoscale modelling techniques (for particle migration or capture) are combined with a diffusion-controlled mass-transfer model to determine the iron collector droplet size needed for >95% PGM recovery in a typical process bath (70 mm deep) in a realistic time-scale (<1 h). The results show that an iron droplet having a diameter in the range 0.1–0.3 mm gives good recovery (>90%) within a reasonable time. This finding is compatible with published experimental data. Pyrometallurgical processes similar to that investigated should be applicable to other types of waste that contain low levels of potentially valuable metals.
Resumo:
There are increasing demands on the power density and efficiency of DC-DC power converters due to the soaring functionality and operational longevity required for today's electronic products. In addition, DC-DC converters are required to operate at new elevated frequencies in the MHz frequency regime. Typical ferrite cores, whose useable flux density falls drastically at these frequencies, have to be replaced and a method of producing compact component windings developed. In this study, two types of microinductors, pot-core and solenoid, for DC-DC converter applications have been analyzed for their performance in the MHz frequency range. The inductors were manufactured using an adapted UV-LIGA process and included electrodeposited nickel-iron and the commercial alloy Vitrovac 6025 as core materials. Using a vibrating sample magnetometer (VSM) and a Hewlett Packard 4192A LF- impedance analyzer, the inductor characteristics such as power density, efficiency, inductance and Q-factor were recorded. Experimental, finite element and analytical results were used to assess the suitability of the magnetic materials and component geometries for low MHz operation.
Resumo:
Experimental, analytical and simulated data are presented in this article to assess the performance of electrodeposited nickel-iron within a novel solenoid microinductor. A design flowchart highlights the primary design principles when developing a microscale magnetic component for DC-DC power converters. Thermal modeling is used to predict the operational conditions that generate undesirable thermal generation within the component. Operating at 0.5MHz, the microinductor achieves an efficiency and power density of 78% and 7.8 W/cm3, respectively.