8 resultados para Phase Transfer Catalysis

em Greenwich Academic Literature Archive - UK


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Computational results for the intensive microwave heating of porous materials are presented in this work. A multi-phase porous media model has been developed to predict the heating mechanism. Combined finite difference time-domain and finite volume methods were used to solve equations that describe the electromagnetic field and heat and mass transfer in porous media. The coupling between the two schemes is through a change in dielectric properties which were assumed to be dependent both on temperature and moisture content. The model was able to reflect the evolution of both temperature and moisture fields as well as energy penetration as the moisture in the porous medium evaporates. Moisture movement results from internal pressure gradients produced by the internal heating and phase change.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As part of a comprehensive effort to predict the development of caking in granular materials, a mathematical model is introduced to model simultaneous heat and moisture transfer with phase change in porous media when undergoing temperature oscillations/cycling. The resulting model partial differential equations were solved using finite-volume procedures in the context of the PHYSICA framework and then applied to the analysis of sugar in storage. The influence of temperature on absorption/desorption and diffusion coefficients is coupled into the transport equations. The temperature profile, the depth of penetration of the temperature oscillation into the bulk solid, and the solids moisture content distribution were first calculated, and these proved to be in good agreement with experimental data. Then, the influence of temperature oscillation on absolute humidity, moisture concentration, and moisture migration for different parameters and boundary conditions was examined. As expected, the results show that moisture near boundary regions responds faster than farther away from them with surface temperature changes. The moisture absorption and desorption in materials occurs mainly near boundary regions (where interactions with the environment are more pronounced). Small amounts of solids moisture content, driven by both temperature and vapour concentration gradients, migrate between boundary and center with oscillating temperature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Unstructured grid meshes used in most commercial CFD codes inevitably adopt collocated variable solution schemes. These schemes have several shortcomings, mainly due to the interpolation of the pressure gradient, that lead to slow convergence. In this publication we show how it is possible to use a much more stable staggered mesh arrangement in an unstructured code. Several alternative groupings of variables are investigated in a search for the optimum scheme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formulation of the carrier-phase momentum and enthalpy source terms in mixed Lagrangian-Eulerian models of particle-laden flows is frequently reported inaccurately. Under certain circumstances, this can lead to erroneous implementations, which violate physical laws. A particle- rather than carrier-based approach is suggested for a consistent treatment of these terms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the continuous casting process for steel slab production is modelled using a mult-physics approach. For this purpose, a Finite Volume (FV) numerical model was constructed in 3D, with the following characteristics: Time dependent, turbulent fluid flow and heat transfer in the molten steel and flux regions, solidification of the skin layer, under prescribed heat loss boundary conditions, particle tracking simulation of argon bubbles injected with the metal into the mould, full coupling between bubbles and liquid through buoyancy and interfacial forces using a novel gas accumulation technique, and a full transient simulation of flux-metal interface behaviour under the influence of gravity and fluid inertial forces and bubble plume buoyancy. The unstructure mesh FV code PHYSICA developed at Greenwich was used for carry out the simulations with physical process data and properties supplied by IRSID SA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Direct chill (DC) casting is a core primary process in the production of aluminum ingots. However, its operational optimization is still under investigation with regard to a number of features, one of which is the issue of curvature at the base of the ingot. Analysis of these features requires a computational model of the process that accounts for the fluid flow, heat transfer, solidification phase change, and thermomechanical analysis. This article describes an integrated approach to the modeling of all the preceding phenomena and their interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computational results for the microwave heating of a porous material are presented in this paper. Combined finite difference time domain and finite volume methods were used to solve equations that describe the electromagnetic field and heat and mass transfer in porous media. The coupling between the two schemes is through a change in dielectric properties which were assumed to be dependent on both temperature and moisture content. The model was able to reflect the evolution of both temperature and moisture fields as well as energy penetration as the moisture in the porous medium evaporates. Moisture movement results from internal pressure gradients produced by the internal heating and phase change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Induction heating is an efficient method used to melt electrically conductive materials, particularly if melting takes place in a ceramic crucible. This form of melting is particularly good for alloys, as electromagnetic forces set up by the induction coil lead to vigorous stirring of the melt ensuring homogeneity and uniformity in temperature. However, for certain reactive alloys, or where high purity is required, ceramic crucibles cannot be used, but a water-cooled segmented copper crucible is employed instead. Water cooling prevents meltdown or distortion of the metal wall, but much of the energy goes into the coolant. To reduce this loss, the electromagnetic force generated by the coil is used to push the melt away from the walls and so minimise contact with water-cooled surfaces. Even then, heat is lost through the crucible base where contact is inevitable. In a collaborative programme between Greenwich and Birmingham Universities, computer modelling has been used in conjunction with experiments to improve the superheat attainable in the melt for a,number of alloys, especially for y-TiAl intermetallics to cast aeroengine turbine blades. The model solves the discretised form of the turbulent Navier-Stokes, thermal energy conservation and Maxwell equations using a Spectral Collocation technique. The time-varying melt envelope is followed explicitly during the computation using an adaptive mesh. This paper briefly describes the mathematical model used to represent the interaction between the magnetic field, fluid flow, heat transfer and change of phase in the crucible and identifies the proportions of energy used in the melt, lost in the crucible base and in the crucible walls. The role of turbulence is highlighted as important in controlling heat losses and turbulence damping is introduced as a means of improving superheat. Model validation is against experimental results and shows good agreement with measured temperatures and energy losses in the cooling fluid throughout the melting cycle.