6 resultados para Permeability.
em Greenwich Academic Literature Archive - UK
Resumo:
The design and development of a comprehensive computational model of a copper stockpile leach process is summarized. The computational fluid dynamic software framework PHYSICA+ and various phenomena were used to model transport phenomena, mineral reaction kinetics, bacterial effects, and heat, energy and acid balances for the overall leach process. In this paper, the performance of the model is investigated, in particular its sensitvity to particle size and ore permeability. A combination of literature and laboratory sources was used to parameterize the model. The simulation results from the leach model are compared with closely controlled column pilot scale tests. The main performance characteristics (e.g. copper recovery rate) predicted by the model compare reasonably well with the experimental data and clearly reflect the qualitiative behavior of the process in many respects. The model is used to provide a measure of the sensitivity of ore permeability on leach behavior, and simulation results are examined for several different particle size distributions.
Resumo:
Despite being exposed to the harsh sea-spray environment of the North Sea at Arbroath, Scotland, for over 63 years, many of the reinforced concrete precast beam elements of the 1.5 km long promenade railing are still in very good condition and show little evidence of reinforcement corrosion. In contrast, railing replacements constructed in about 1968 and in 1993 are almost all badly cracked as a result of extensive corrosion of the longitudinal reinforcement. This is despite the newer concrete appearing to be of better quality than the 1943 concrete. Statistics for maximum crack width for each of the three populations, based on measurements made in 2004 and in 2006, are presented. In situ and laboratory measurements show that the 1943 concrete appears to have high permeability but it also shows high electrical resistivity. Chloride penetration measurements show the 1943 and 1993 concretes to have similar chloride profiles and similar chloride concentrations at the reinforcement bars. This is inconsistent with the 1943 beams showing much less reinforcement corrosion than their later replacements and casts doubt on the conventional practice for durability design focusing on reducing concrete permeability through denser concretes or greater cover.
Resumo:
Purpose: To study the impact of powder flow properties on dosator filling systems, with particular focus on improvements in dose weight accuracy and repeatability. Method: This study evaluates a range of critical powder flow properties such as: flow function, cohesion, wall friction, adhesion to wall surfaces, density/compressibility data, stress ratio “K” and gas permeability. The characterisations of the powders considered in this study were undertaken using an annular shear cell using a sample size of 0.5 litres. This tester also incorporated the facility to measure bed expansion during shear in addition to contraction under consolidation forces. A modified Jenike type linear wall friction tester was used to develop the failure loci for the powder sample in conjunction with multiple wall samples (representing a variety of material types and surface finishes). Measurements of the ratio of applied normal stress versus lateral stress were determined using a piece of test equipment specifically designed for the purpose. Results: The correct characterisation of powders and the incorporation of this data into the design of process equipment are recognised as critical for reliable and accurate operation. An example of one aspect of this work is the stress ratio “K”. This characteristic is not well understood or correctly interpreted in many cases – despite its importance. Fig 1 [Omitted] (illustrates a sample of test data. The slope of the line gives the stress ratio in a uniaxial compaction system – indicating the behaviour of the material under compaction during dosing processes. Conclusions: A correct assessment of the bulk powder properties for a given formulation can allow prediction of: cavity filling behaviour (and hence dosage), efficiency of release from dosator, and strength and stability of extruded dose en route to capsule filling Influences over the effectiveness of dosator systems have been shown to be impacted upon by: bed pre-compaction history, gas permeability in the bed (with respect to local density effects), and friction effects for materials of construction for dosators
Resumo:
Purpose: To develop an improved mathematical model for the prediction of dose accuracy of Dosators - based upon the geometry of the machine in conjunction with measured flow properties of the powder. Methods: A mathematical model has been created, based on a analytical method of differential slices - incorporating measured flow properties. The key flow properties of interest in this investigation were: flow function, effective angle of wall friction, wall adhesion, bulk density, stress ratio K and permeability. To simulate the real process and (very importantly) validate the model, a Dosator test-rig has been used to measure the forces acting on the Dosator during the filling stage, the force required to eject the dose and the dose weight. Results: Preliminary results were obtained from the Dosator test-rig. Figure 1 [Omitted] shows the dose weight for different depths to the bottom of the powder bed at the end of the stroke and different levels of pre-compaction of the powder bed. A strong influence over dose weight arising from the proximity between the Dosator and the bottom of the powder bed at the end of the stroke and the conditions of the powder bed has been established. Conclusions: The model will provide a useful tool to predict dosing accuracy and, thus, optimise the future design of Dosator based equipment technology – based on measured bulk properties of the powder to be handled. Another important factor (with a significant influence) on Dosator processes, is the condition of the powder bed and the clearance between the Dosator and the bottom of the powder bed.
Resumo:
The recognition that urban groundwater is a potentially valuable resource for potable and industrial uses due to growing pressures on perceived less polluted rural groundwater has led to a requirement to assess the groundwater contamination risk in urban areas from industrial contaminants such as chlorinated solvents. The development of a probabilistic risk based management tool that predicts groundwater quality at potential new urban boreholes is beneficial in determining the best sites for future resource development. The Borehole Optimisation System (BOS) is a custom Geographic Information System (GIs) application that has been developed with the objective of identifying the optimum locations for new abstraction boreholes. BOS can be applied to any aquifer subject to variable contamination risk. The system is described in more detail by Tait et al. [Tait, N.G., Davison, J.J., Whittaker, J.J., Lehame, S.A. Lerner, D.N., 2004a. Borehole Optimisation System (BOS) - a GIs based risk analysis tool for optimising the use of urban groundwater. Environmental Modelling and Software 19, 1111-1124]. This paper applies the BOS model to an urban Permo-Triassic Sandstone aquifer in the city centre of Nottingham, UK. The risk of pollution in potential new boreholes from the industrial chlorinated solvent tetrachloroethene (PCE) was assessed for this region. The risk model was validated against contaminant concentrations from 6 actual field boreholes within the study area. In these studies the model generally underestimated contaminant concentrations. A sensitivity analysis showed that the most responsive model parameters were recharge, effective porosity and contaminant degradation rate. Multiple simulations were undertaken across the study area in order to create surface maps indicating areas of low PCE concentrations, thus indicating the best locations to place new boreholes. Results indicate that northeastern, eastern and central regions have the lowest potential PCE concentrations in abstraction groundwater and therefore are the best sites for locating new boreholes. These locations coincide with aquifer areas that are confined by low permeability Mercia Mudstone deposits. Conversely southern and northwestern areas are unconfined and have shallower depth to groundwater. These areas have the highest potential PCE concentrations. These studies demonstrate the applicability of BOS as a tool for informing decision makers on the development of urban groundwater resources. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Dosators and other dosing mechanisms operating on generally similar principles are very widely used in the pharmaceutical industry for capsule filling, and for dosing products that are delivered to the customer in powder form such as inhalers. This is a trend that is set to increase. However a significant problem for this technology is being able to predict how accurately and reliably, new drug formulations will be dosed from these machines prior to manufacture. This paper presents a review of the literature relating to powder dosators which considers mathematical models for predicting dosator performance, the effects of the dosator geometry and machine settings on the accuracy of the dose weight. An overview of a model based on classical powder mechanics theory that has been developed at The University of Greenwich is presented. The model uses inputs from a range of powder characterisation tests including, wall friction, bulk density, stress ratio and permeability. To validate the model it is anticipated that it will be trialled for a range of powders alongside a single shot dosator test rig.