20 resultados para Parallel Evolutionary Algorithms
em Greenwich Academic Literature Archive - UK
Resumo:
Three parallel optimisation algorithms, for use in the context of multilevel graph partitioning of unstructured meshes, are described. The first, interface optimisation, reduces the computation to a set of independent optimisation problems in interface regions. The next, alternating optimisation, is a restriction of this technique in which mesh entities are only allowed to migrate between subdomains in one direction. The third treats the gain as a potential field and uses the concept of relative gain for selecting appropriate vertices to migrate. The results are compared and seen to produce very high global quality partitions, very rapidly. The results are also compared with another partitioning tool and shown to be of higher quality although taking longer to compute.
Resumo:
A parallel genetic algorithm (PGA) is proposed for the solution of two-dimensional inverse heat conduction problems involving unknown thermophysical material properties. Experimental results show that the proposed PGA is a feasible and effective optimization tool for inverse heat conduction problems
Resumo:
Abstract not available
Resumo:
The graph-partitioning problem is to divide a graph into several pieces so that the number of vertices in each piece is the same within some defined tolerance and the number of cut edges is minimised. Important applications of the problem arise, for example, in parallel processing where data sets need to be distributed across the memory of a parallel machine. Very effective heuristic algorithms have been developed for this problem which run in real-time, but it is not known how good the partitions are since the problem is, in general, NP-complete. This paper reports an evolutionary search algorithm for finding benchmark partitions. A distinctive feature is the use of a multilevel heuristic algorithm to provide an effective crossover. The technique is tested on several example graphs and it is demonstrated that our method can achieve extremely high quality partitions significantly better than those found by the state-of-the-art graph-partitioning packages.
Resumo:
In this paper, we first demonstrate that the classical Purcell's vector method when combined with row pivoting yields a consistently small growth factor in comparison to the well-known Gauss elimination method, the Gauss–Jordan method and the Gauss–Huard method with partial pivoting. We then present six parallel algorithms of the Purcell method that may be used for direct solution of linear systems. The algorithms differ in ways of pivoting and load balancing. We recommend algorithms V and VI for their reliability and algorithms III and IV for good load balance if local pivoting is acceptable. Some numerical results are presented.
Resumo:
The intrinsic independent features of the optimal codebook cubes searching process in fractal video compression systems are examined and exploited. The design of a suitable parallel algorithm reflecting the concept is presented. The Message Passing Interface (MPI) is chosen to be the communication tool for the implementation of the parallel algorithm on distributed memory parallel computers. Experimental results show that the parallel algorithm is able to reduce the compression time and achieve a high speed-up without changing the compression ratio and the quality of the decompressed image. A scalability test was also performed, and the results show that this parallel algorithm is scalable.
Resumo:
The availability of a very accurate dependence graph for a scalar code is the basis for the automatic generation of an efficient parallel implementation. The strategy for this task which is encapsulated in a comprehensive data partitioning code generation algorithm is described. This algorithm involves the data partition, calculation of assignment ranges for partitioned arrays, addition of a comprehensive set of execution control masks, altering loop limits, addition and optimisation of communications for all data. In this context, the development and implementation of strategies to merge communications wherever possible has proved an important feature in producing efficient parallel implementations for numerical mesh based codes. The code generation strategies described here are embedded within the Computer Aided Parallelisation tools (CAPTools) software as a key part of a toolkit for automating as much as possible of the parallelisation process for mesh based numerical codes. The algorithms used enables parallelisation of real computational mechanics codes with only minor user interaction and without any prior manual customisation of the serial code to suit the parallelisation tool.
Resumo:
The paper describes the design of an efficient and robust genetic algorithm for the nuclear fuel loading problem (i.e., refuellings: the in-core fuel management problem) - a complex combinatorial, multimodal optimisation., Evolutionary computation as performed by FUELGEN replaces heuristic search of the kind performed by the FUELCON expert system (CAI 12/4), to solve the same problem. In contrast to the traditional genetic algorithm which makes strong requirements on the representation used and its parameter setting in order to be efficient, the results of recent research results on new, robust genetic algorithms show that representations unsuitable for the traditional genetic algorithm can still be used to good effect with little parameter adjustment. The representation presented here is a simple symbolic one with no linkage attributes, making the genetic algorithm particularly easy to apply to fuel loading problems with differing core structures and assembly inventories. A nonlinear fitness function has been constructed to direct the search efficiently in the presence of the many local optima that result from the constraint on solutions.
Resumo:
The problem of deriving parallel mesh partitioning algorithms for mapping unstructured meshes to parallel computers is discussed in this chapter. In itself this raises a paradox - we seek to find a high quality partition of the mesh, but to compute it in parallel we require a partition of the mesh. In fact, we overcome this difficulty by deriving an optimisation strategy which can find a high quality partition even if the quality of the initial partition is very poor and then use a crude distribution scheme for the initial partition. The basis of this strategy is to use a multilevel approach combined with local refinement algorithms. Three such refinement algorithms are outlined and some example results presented which show that they can produce very high global quality partitions, very rapidly. The results are also compared with a similar multilevel serial partitioner and shown to be almost identical in quality. Finally we consider the impact of the initial partition on the results and demonstrate that the final partition quality is, modulo a certain amount of noise, independent of the initial partition.
Resumo:
The scheduling problem of minimizing the makespan for m parallel dedicated machines under single resource constraints is considered. For different variants of the problem the complexity status is established. Heuristic algorithms employing the so-called group technology approach are presented and their worst-case behavior is examined. Finally, a polynomial time approximation scheme is presented for the problem with fixed number of machines.
Resumo:
The paper considers scheduling problems for parallel dedicated machines subject to resource constraints. A fairly complete computational complexity classification is obtained, a number of polynomial-time algorithms are designed. For the problem with a fixed number of machines in which a job uses at most one resource of unit size a polynomial-time approximation scheme is offered.
Resumo:
Fractal video compression is a relatively new video compression method. Its attraction is due to the high compression ratio and the simple decompression algorithm. But its computational complexity is high and as a result parallel algorithms on high performance machines become one way out. In this study we partition the matching search, which occupies the majority of the work in a fractal video compression process, into small tasks and implement them in two distributed computing environments, one using DCOM and the other using .NET Remoting technology, based on a local area network consists of loosely coupled PCs. Experimental results show that the parallel algorithm is able to achieve a high speedup in these distributed environments.
Resumo:
We consider a variety of preemptive scheduling problems with controllable processing times on a single machine and on identical/uniform parallel machines, where the objective is to minimize the total compression cost. In this paper, we propose fast divide-and-conquer algorithms for these scheduling problems. Our approach is based on the observation that each scheduling problem we discuss can be formulated as a polymatroid optimization problem. We develop a novel divide-and-conquer technique for the polymatroid optimization problem and then apply it to each scheduling problem. We show that each scheduling problem can be solved in $ \O({\rm T}_{\rm feas}(n) \times\log n)$ time by using our divide-and-conquer technique, where n is the number of jobs and Tfeas(n) denotes the time complexity of the corresponding feasible scheduling problem with n jobs. This approach yields faster algorithms for most of the scheduling problems discussed in this paper.
Resumo:
We consider a problem of scheduling jobs on m parallel machines. The machines are dedicated, i.e., for each job the processing machine is known in advance. We mainly concentrate on the model in which at any time there is one unit of an additional resource. Any job may be assigned the resource and this reduces its processing time. A job that is given the resource uses it at each time of its processing. No two jobs are allowed to use the resource simultaneously. The objective is to minimize the makespan. We prove that the two-machine problem is NP-hard in the ordinary sense, describe a pseudopolynomial dynamic programming algorithm and convert it into an FPTAS. For the problem with an arbitrary number of machines we present an algorithm with a worst-case ratio close to 3/2, and close to 3, if a job can be given several units of the resource. For the problem with a fixed number of machines we give a PTAS. Virtually all algorithms rely on a certain variant of the linear knapsack problem (maximization, minimization, multiple-choice, bicriteria). © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008