5 resultados para Palladio, Andrea, 1508-1580.

em Greenwich Academic Literature Archive - UK


Relevância:

40.00% 40.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The multilevel paradigm as applied to combinatorial optimisation problems is a simple one, which at its most basic involves recursive coarsening to create a hierarchy of approximations to the original problem. An initial solution is found, usually at the coarsest level, and then iteratively refined at each level, coarsest to finest, typically by using some kind of heuristic optimisation algorithm (either a problem-specific local search scheme or a metaheuristic). Solution extension (or projection) operators can transfer the solution from one level to another. As a general solution strategy, the multilevel paradigm has been in use for many years and has been applied to many problem areas (for example multigrid techniques can be viewed as a prime example of the paradigm). Overview papers such as [] attest to its efficacy. However, with the exception of the graph partitioning problem, multilevel techniques have not been widely applied to combinatorial problems and in this chapter we discuss recent developments. In this chapter we survey the use of multilevel combinatorial techniques and consider their ability to boost the performance of (meta)heuristic optimisation algorithms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the soldering process, the copper atoms diffuse into liquid solders. The diffusion process determines integrity and the reworking possibility of a solder joint. In order to capture the diffusion scenarios of solid copper into liquid Sn–Pb and Sn–Cu solders, a computer modeling has been performed for 10 s. An analytical model has also been proposed for calculating the diffusion coefficient of copper into liquid solders. It is found that the diffusion coefficient for Sn–Pb solder is 2.74 × 10− 10 m2/s and for Sn–Cu solder is 6.44 × 10−9 m2/s. The modeling results reveal that the diffusion coefficient is one of the major factors that govern the rate at which solid Cu dissolve in the molten solder. The predicted dissolved amounts of copper into solders have been validated with the help of scanning electron microscopic analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

B3-LYP/cc-pVDZ calculations of the gas-phase structure and vibrational spectra of the isolated molecule cyclo(L-Ser-L-Ser), a cyclic di-amino acid peptide (CDAP), were carried out by assuming C-2 symmetry. It is predicted that the minimum-energy structure is a boat conformation for the diketopiperazine (DKP) ring with both L-Beryl side chains being folded slightly above the ring. An additional structure of higher energy (15.16 kJ mol(-1)) has been calculated for a DKP ring with a planar geometry, although in this case two fundamental vibrations have been calculated with imaginary wavenumbers. The reported X-ray crystallographic structure of cyclo(L-Ser-L-Ser), shows that the DKP ring displays a near-planar conformation, with both the two L-Beryl side chains being folded above the ring. It is hypothesized that the crystal packing forces constrain the DKP ring in a planar conformation and it is probable that the lower energy boat conformation may prevail in the aqueous environment. Raman scattering and Fourier-transform infrared (FT-IR) spectra of solid state and aqueous solution samples of cyclo(L-Ser-L-Ser) are reported and discussed. Vibrational band assignments have been made on the basis of comparisons with the calculated vibrational spectra and band wavenumber shifts upon deuteration of labile protons. The experimental Raman and IR results for solid-state samples show characteristic amide I vibrations which are split (Raman:1661 and 1687 cm(-1), IR:1666 and 1680 cm(-1)), possibly due to interactions between molecules in a crystallographic unit cell. The cis amide I band is differentiated by its deuterium shift of ~ 30 cm(-1), which is larger than that previously reported for trans amide I deuterium shifts. A cis amide II mode has been assigned to a Raman band located at 1520 cm(-1). The occurrence of this cis amide II mode at a wavenumber above 1500 cm(-1) concurs with results of previously examined CDAP molecules with low molecular weight substituents on the C-alpha atoms, and is also indicative of a relatively unstrained DKP ring.