6 resultados para POLYSULFONE IONOMERS

em Greenwich Academic Literature Archive - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composite resins and glass-ionomer cements were introduced to dentistry in the 1960s and 1970s, respectively. Since then, there has been a series of modifications to both materials as well as the development other groups claiming intermediate characteristics between the two. The result is a confusion of materials leading to selection problems. While both materials are tooth-colored, there is a considerable difference in their properties, and it is important that each is used in the appropriate situation. Composite resin materials are esthetic and now show acceptable physical strength and wear resistance. However, they are hydrophobic, and therefore more difficult to handle in the oral environment, and cannot support ion migration. Also, the problems of gaining long-term adhesion to dentin have yet to be overcome. On the other hand, glass ionomers are water-based and therefore have the potential for ion migration, both inward and outward from the restoration, leading to a number of advantages. However, they lack the physical properties required for use in load-bearing areas. A logical classification designed to differentiate the materials was first published by McLean et al in 1994, but in the last 15 years, both types of material have undergone further research and modification. This paper is designed to bring the classification up to date so that the operator can make a suitable, evidence-based, choice when selecting a material for any given situation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of aluminum in glass-ionomers and resin-modified glass-ionomers for dentistry is reviewed. Aluminum is included in the glass component of these materials in the form of Al(2)O(3) to confer basicity on the glass and enable the glass to take part in the acid-base setting reactions. Results of studies of these reactions by FTIR and magic-angle spinning (MAS)-NMR spectroscopy are reported and the role of aluminum is discussed in detail. Aluminum has been shown to be present in the glasses in predominantly 4-coordination, as well as 5- and 6-coordination, and during setting a proportion of this is converted to 6-coordinate species within the matrix of the cement. Despite this, mature cements may contain detectable amounts of both 4- and 5-coordinate aluminum. Aluminum has been found to be leached from glass-ionomer cements, with greater amounts being released under acidic conditions. It may be associated with fluoride, with which it is known to complex strongly. Aluminum that enters the body via the gastro-intestinal tract is mainly excreted, and only about 1% ingested aluminum crosses the gut wall. Calculation shows that, if a glass-ionomer filling dissolved completely over 5 years, it would add only an extra 0.5% of the recommended maximum intake of aluminum to an adult patient. This leads to the conclusion that the release of aluminum from either type of glass-ionomer cement in the mouth poses a negligible health hazard.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: The aim of this study was to investigate the adaptation of different types of restorations towards deciduous and young permanent teeth. Materials and Methods: Class V cavities were prepared in deciduous and young permanent teeth and filled with different materials (a conventional glass-ionomer, a resin-modified glass-ionomer, a poly-acid-modified composite resin and a conventional composite resin). Specimens were aged in artificial saliva for 1, 6, 12 and 18 months, then examined by SEM. Results: The composite resin and the polyacid-modified composite had better marginal adaptation than the glass-ionomers,though microcracks developed in the enamel of the tooth. The glass-ionomers showed inferior marginal quality and durability, but no microcracking of the enamel. The margins of the resin-modified glass-ionomer were slightly superior to the conventional glass-ionomer. Conditioning improved the adaptation of the composite resin, but the type of tooth made little or no difference to the performance of the restorative material. All materials were associated with the formation of crystals in the gaps between the filling and the tooth; the quantity and shape of these crystals varied with the material. Conclusions: Resin-based materials are generally better at forming sound, durable margins in deciduous and young permanent teeth than cements, but are associated with microcracks in the enamel. All fluoride-releasing materials give rise to crystalline deposits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: The biological effects of resin-modified glass-ionomer cements as used in clinical dentistry are described, and the literature reviewed on this topic. METHODS: Information on resin-modified glass-ionomers and on 2-hydroxyethyl methacrylate (HEMA), the most damaging substance released by these materials, has been collected from over 50 published papers. These were mainly identified through Scopus. RESULTS: HEMA is known to be released from these materials and has a variety of damaging biological properties, ranging from pulpal inflammation to allergic contact dermatitis. These are therefore potential hazards from resin-modified glass-ionomers. However, clinical results with these materials that have been reported to date are generally positive. CONCLUSIONS/SIGNIFICANCE: Resin-modified glass-ionomers cannot be considered biocompatible to nearly the same extent as conventional glass-ionomers. Care needs to be taken with regard to their use in dentistry and, in particular, dental personnel may be at risk from adverse effects such as contact dermatitis and other immunological responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The water sorption and desorption behaviour of three commercial glass-ionomer cements used in clinical dentistry have been studied in detail. Cured specimens of each material were found to show slight but variable water uptake in high humidity conditions, but steady loss in desiccating ones. This water loss was found to follow Fick's law for the first 4-5 h. Diffusion coefficients at 22 degrees C were: Chemflex 1.34 x 10(-6) cm(2) s(-1), Fuji IX 5.87 x 10(-7) cm(2) s(-1), Aquacem 3.08 x 10(-6) cm(2) s(-1). At 7 degrees C they were: Chemflex 8.90 x 10(-7) cm(2) s(-1), Fuji IX 5.04 x 10(-7) cm(2) s(-1), Aquacem 2.88 x 10(-6) cm(2) s(-1). Activation energies for water loss were determined from the Arrhenius equation and were found to be Chemflex 161.8 J mol(-1), Fuji IX 101.3 J mol(-1), Aquacem 47.1 J mol(-1). Such low values show that water transport requires less energy in these cements than in resin-modified glass-ionomers. Fick's law plots were found not to pass through the origin. This implies that, in each case, there is a small water loss that does not involve diffusion. This was concluded to be water at the surface of the specimens, and was termed "superficial water". As such, it represents a fraction of the previously identified unbound (loose) water. Superficial water levels were: Chemflex 0.56%, Fuji IX 0.23%, Aquacem 0.87%. Equilibrium mass loss values were shown to be unaffected by temperature, and allowed ratios of bound:unbound water to be determined for all three cements. These showed wide variation, ranging from 1:5.26 for Chemflex to 1:1.25 for Fuji IX.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water uptake and water loss have been studied in a commercial resin-modified glass-ionomer cement, Fuji II LC, under a variety of conditions. Uptake was generally non-Fickian, but affected by temperature. At room temperature, the equilibrium water uptake values varied from 2.47 to 2.78% whereas at low temperature (12 degrees C), it varied from 0.85 to 1.18%. Cure time affected uptake values significantly. Water uptake was much lower than in conventional glass-ionomer restorative cements exposed to water vapor. Loss of water under desiccating conditions was found to be Fickian for the first 5 h loss at both 22 and 12 degrees C. Diffusion coefficients were between 0.45 and 0.76 x 10( -7) cm(2)/s, with low temperature diffusion coefficients slightly greater than those at room temperature. Plotting water loss as percentage versus s(-(1/2)) allowed activation energies to be determined from the Arrhenius equation and these were found to be 65.6, 79.8, and 7.7 kJ/mol respectively for 30, 20, and 10 s cure times. The overall conclusion is that the main advantage of incorporating HEMA into resin-modified-glass-ionomers is to alter water loss behavior. Rate of water loss and total amount lost are both reduced. Hence, resin-modified glass-ionomers are less sensitive to water loss than conventional glass-ionomers.