1 resultado para Optical Motion Capture
em Greenwich Academic Literature Archive - UK
Filtro por publicador
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (5)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (2)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (5)
- Boston University Digital Common (7)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (23)
- CentAUR: Central Archive University of Reading - UK (12)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (14)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (3)
- CORA - Cork Open Research Archive - University College Cork - Ireland (7)
- Digital Commons - Michigan Tech (5)
- Digital Commons at Florida International University (3)
- Digital Peer Publishing (7)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (6)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (13)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (31)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (323)
- Instituto Politécnico do Porto, Portugal (4)
- Massachusetts Institute of Technology (2)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- QSpace: Queen's University - Canada (5)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (32)
- Queensland University of Technology - ePrints Archive (323)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositorio Institucional de la Universidad de El Salvador (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (7)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (2)
- Research Open Access Repository of the University of East London. (2)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (14)
- Universidade Complutense de Madrid (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (4)
- University of Canberra Research Repository - Australia (2)
- University of Michigan (1)
- University of Southampton, United Kingdom (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Solder is often used as an adhesive to attach optical fibers to a circuit board. In this proceeding we will discuss efforts to model the motion of an optical fiber during the wetting and solidification of the adhesive solder droplet. The extent of motion is determined by several competing forces, during three “stages” of solder joint formation. First, capillary forces of the liquid phase control the fiber position. Second, during solidification, the presence of the liquid-solid-vapor triple line as well as a reduced liquid solder volume leads to a change in the net capillary force on the optical fiber. Finally, the solidification front itself impinges on the fiber. Publicly-available finite element models are used to calculate the time-dependent position of the solidification front and shape of the free surface.