3 resultados para Operational analysis
em Greenwich Academic Literature Archive - UK
Resumo:
Evacuation models have been playing an important function in the transition process from prescriptive fire safety codes to performance-based ones over the last three decades. In fact, such models became also useful tools in different tasks within fire safety engineering field, such as fire risks assessment and fire investigation. However, there are some difficulties in this process when using these models. For instance, during the evacuation modelling analysis, a common problem faced by fire safety engineers concerns the number of simulations which needs to be performed. In other terms, which fire designs (i.e., scenarios) should be investigated using the evacuation models? This type of question becomes more complex when specific issues such as the optimal positioning of exits within an arbitrarily structure needs to be addressed. Therefore, this paper presents a methodology which combines the use of evacuation models with numerical techniques used in the operational research field, such as Design of Experiments (DoE), Response Surface Models (RSM) and the numerical optimisation techniques. The methodology here presented is restricted to evacuation modelling analysis, nevertheless this same concept can be extended to fire modelling analysis.
Resumo:
This paper demonstrates a modeling and design approach that couples computational mechanics techniques with numerical optimisation and statistical models for virtual prototyping and testing in different application areas concerning reliability of eletronic packages. The integrated software modules provide a design engineer in the electronic manufacturing sector with fast design and process solutions by optimizing key parameters and taking into account complexity of certain operational conditions. The integrated modeling framework is obtained by coupling the multi-phsyics finite element framework - PHYSICA - with the numerical optimisation tool - VisualDOC into a fully automated design tool for solutions of electronic packaging problems. Response Surface Modeling Methodolgy and Design of Experiments statistical tools plus numerical optimisaiton techniques are demonstrated as a part of the modeling framework. Two different problems are discussed and solved using the integrated numerical FEM-Optimisation tool. First, an example of thermal management of an electronic package on a board is illustrated. Location of the device is optimized to ensure reduced junction temperature and stress in the die subject to certain cooling air profile and other heat dissipating active components. In the second example thermo-mechanical simulations of solder creep deformations are presented to predict flip-chip reliability and subsequently used to optimise the life-time of solder interconnects under thermal cycling.
Resumo:
Identification, when sought, is not necessarily obtained. Operational guidance that is normatively acceptable may be necessary for such cases. We proceed to formalize and illustrate modes of exchanges of individual identity, and provide procedures of recovery strategies in specific prescriptions from an ancient body of law for such situations when, for given types of purposes, individuals of some relevant kind had become intermixed and were undistinguishable. Rules were devised, in a variety of domains, for coping with situations that occur if and when the goal of identification was frustrated. We propose or discuss mathematical representations of such recovery procedures.