3 resultados para Ocean mining
em Greenwich Academic Literature Archive - UK
Resumo:
This paper briefly describes an interactive parallelisation toolkit that can be used to generate parallel code suitable for either a distributed memory system (using message passing) or a shared memory system (using OpenMP). This study focuses on how the toolkit is used to parallelise a complex heterogeneous ocean modelling code within a few hours for use on a shared memory parallel system. The generated parallel code is essentially the serial code with OpenMP directives added to express the parallelism. The results show that substantial gains in performance can be achieved over the single thread version with very little effort.
Resumo:
This paper describes an interactive parallelisation toolkit that can be used to generate parallel code suitable for either a distributed memory system (using message passing) or a shared memory system (using OpenMP). This study focuses on how the toolkit is used to parallelise a complex heterogeneous ocean modelling code within a few hours for use on a shared memory parallel system. The generated parallel code is essentially the serial code with OpenMP directives added to express the parallelism. The results show that substantial gains in performance can be achieved over the single thread version with very little effort.
Resumo:
Time-series and sequences are important patterns in data mining. Based on an ontology of time-elements, this paper presents a formal characterization of time-series and state-sequences, where a state denotes a collection of data whose validation is dependent on time. While a time-series is formalized as a vector of time-elements temporally ordered one after another, a state-sequence is denoted as a list of states correspondingly ordered by a time-series. In general, a time-series and a state-sequence can be incomplete in various ways. This leads to the distinction between complete and incomplete time-series, and between complete and incomplete state-sequences, which allows the expression of both absolute and relative temporal knowledge in data mining.