3 resultados para Numerical slope stability
em Greenwich Academic Literature Archive - UK
Resumo:
The growth of computer power allows the solution of complex problems related to compressible flow, which is an important class of problems in modern day CFD. Over the last 15 years or so, many review works on CFD have been published. This book concerns both mathematical and numerical methods for compressible flow. In particular, it provides a clear cut introduction as well as in depth treatment of modern numerical methods in CFD. This book is organised in two parts. The first part consists of Chapters 1 and 2, and is mainly devoted to theoretical discussions and results. Chapter 1 concerns fundamental physical concepts and theoretical results in gas dynamics. Chapter 2 describes the basic mathematical theory of compressible flow using the inviscid Euler equations and the viscous Navier–Stokes equations. Existence and uniqueness results are also included. The second part consists of modern numerical methods for the Euler and Navier–Stokes equations. Chapter 3 is devoted entirely to the finite volume method for the numerical solution of the Euler equations and covers fundamental concepts such as order of numerical schemes, stability and high-order schemes. The finite volume method is illustrated for 1-D as well as multidimensional Euler equations. Chapter 4 covers the theory of the finite element method and its application to compressible flow. A section is devoted to the combined finite volume–finite element method, and its background theory is also included. Throughout the book numerous examples have been included to demonstrate the numerical methods. The book provides a good insight into the numerical schemes, theoretical analysis, and validation of test problems. It is a very useful reference for applied mathematicians, numerical analysts, and practice engineers. It is also an important reference for postgraduate researchers in the field of scientific computing and CFD.
Resumo:
An MHD flow is considered which is relevant to horizontal Bridgman technique for crystal growth from a melt. In the unidirectional parallel flow approximation an analytical solution is found accounting for the finite rectangular cross section of the channel in the case of a vertical magnetic field. Numerical pseudo-spectral solutions are used in the cases of arbitrary magnetic field and gravity vector orientations. The vertical magnetic field (parallel to the gravity) is found to be he most effective to damp the flow, however, complicated flow profiles with "overvelocities" in the comers are typical in the case of a finite cross-section channel. The temperature distribution is shown to be dependent on the flow profile. The linear stability of the flow is investigated by use of the Chebyshev pseudospectral method. For the case of an infinite width channel the transversal rolls instability is investigated, and for the finite cross-section channel the longitudinal rolls instability is considered. The critical Gr number values are computed in the dependence of the Ha number and the wave number or the aspect ratio in the case of finite section.
Resumo:
An industrial electrolysis cell used to produce primary aluminium is sensitive to waves at the interface of liquid aluminium and electrolyte. The interface waves are similar to stratified sea layers [1], but the penetrating electric current and the associated magnetic field are intricately involved in the oscillation process, and the observed wave frequencies are shifted from the purely hydrodynamic ones [2]. The interface stability problem is of great practical importance because the electrolytic aluminium production is a major electrical energy consumer, and it is related to environmental pollution rate. The stability analysis was started in [3] and a short summary of the main developments is given in [2]. Important aspects of the multiple mode interaction have been introduced in [4], and a widely used linear friction law first applied in [5]. In [6] a systematic perturbation expansion is developed for the fluid dynamics and electric current problems permitting reduction of the three-dimensional problem to a two dimensional one. The procedure is more generally known as “shallow water approximation” which can be extended for the case of weakly non-linear and dispersive waves. The Boussinesq formulation permits to generalise the problem for non-unidirectionally propagating waves accounting for side walls and for a two fluid layer interface [1]. Attempts to extend the electrolytic cell wave modelling to the weakly nonlinear case have started in [7] where the basic equations are derived, including the nonlinearity and linear dispersion terms. An alternative approach for the nonlinear numerical simulation for an electrolysis cell wave evolution is attempted in [8 and references there], yet, omitting the dispersion terms and without a proper account for the dissipation, the model can predict unstable waves growth only. The present paper contains a generalisation of the previous non linear wave equations [7] by accounting for the turbulent horizontal circulation flows in the two fluid layers. The inclusion of the turbulence model is essential in order to explain the small amplitude self-sustained oscillations of the liquid metal surface observed in real cells, known as “MHD noise”. The fluid dynamic model is coupled to the extended electromagnetic simulation including not only the fluid layers, but the whole bus bar circuit and the ferromagnetic effects [9].