22 resultados para Numerical power performance

em Greenwich Academic Literature Archive - UK


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes two new techniques designed to enhance the performance of fire field modelling software. The two techniques are "group solvers" and automated dynamic control of the solution process, both of which are currently under development within the SMARTFIRE Computational Fluid Dynamics environment. The "group solver" is a derivation of common solver techniques used to obtain numerical solutions to the algebraic equations associated with fire field modelling. The purpose of "group solvers" is to reduce the computational overheads associated with traditional numerical solvers typically used in fire field modelling applications. In an example, discussed in this paper, the group solver is shown to provide a 37% saving in computational time compared with a traditional solver. The second technique is the automated dynamic control of the solution process, which is achieved through the use of artificial intelligence techniques. This is designed to improve the convergence capabilities of the software while further decreasing the computational overheads. The technique automatically controls solver relaxation using an integrated production rule engine with a blackboard to monitor and implement the required control changes during solution processing. Initial results for a two-dimensional fire simulation are presented that demonstrate the potential for considerable savings in simulation run-times when compared with control sets from various sources. Furthermore, the results demonstrate the potential for enhanced solution reliability due to obtaining acceptable convergence within each time step, unlike some of the comparison simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computer Aided Parallelisation Tools (CAPTools) is a toolkit designed to automate as much as possible of the process of parallelising scalar FORTRAN 77 codes. The toolkit combines a very powerful dependence analysis together with user supplied knowledge to build an extremely comprehensive and accurate dependence graph. The initial version has been targeted at structured mesh computational mechanics codes (eg. heat transfer, Computational Fluid Dynamics (CFD)) and the associated simple mesh decomposition paradigm is utilised in the automatic code partition, execution control mask generation and communication call insertion. In this, the first of a series of papers [1–3] the authors discuss the parallelisations of a number of case study codes showing how the various component tools may be used to develop a highly efficient parallel implementation in a few hours or days. The details of the parallelisation of the TEAMKE1 CFD code are described together with the results of three other numerical codes. The resulting parallel implementations are then tested on workstation clusters using PVM and an i860-based parallel system showing efficiencies well over 80%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computer based mathematical models describing the aircraft evacuation process have a vital role to play in the design and development of safer aircraft, the implementation of safer and more rigorous certification criteria, in cabin crew training and post-mortem accident investigation. As the risk of personal injury and the costs involved in performing large-scale evacuation experiments for the next generation ultra high capacity aircraft (UHCA) are expected to be high, the development and use of these evacuation modelling tools may become essential if these aircraft are to prove a viable reality. This paper describes the capabilities and limitations of the airEXODUS evacuation model and some attempts at validation, including its successful application to the prediction of a recent certification trial, prior to the actual trial taking place. Also described is a newly defined performance parameter known as OPS that can be used as a measure of evacuation trial optimality. In addition, sample evacuation simulations in the presence of fire atmospheres are described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerical solutions of realistic 2-D and 3-D inverse problems may require a very large amount of computation. A two-level concept on parallelism is often used to solve such problems. The primary level uses the problem partitioning concept which is a decomposition based on the mathematical/physical problem. The secondary level utilizes the widely used data partitioning concept. A theoretical performance model is built based on the two-level parallelism. The observed performance results obtained from a network of general purpose Sun Sparc stations are compared with the theoretical values. Restrictions of the theoretical model are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses preconditioned Krylov subspace methods for solving large scale linear systems that originate from oil reservoir numerical simulations. Two types of preconditioners, one being based on an incomplete LU decomposition and the other being based on iterative algorithms, are used together in a combination strategy in order to achieve an adaptive and efficient preconditioner. Numerical tests show that different Krylov subspace methods combining with appropriate preconditioners are able to achieve optimal performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heat is extracted away from an electronic package by convection, conduction, and/or radiation. The amount of heat extracted by forced convection using air is highly dependent on the characteristics of the airflow around the package which includes its velocity and direction. Turbulence in the air is also important and is required to be modeled accurately in thermal design codes that use computational fluid dynamics (CFD). During air cooling the flow can be classified as laminar, transitional, or turbulent. In electronics systems, the flow around the packages is usually in the transition region, which lies between laminar and turbulent flow. This requires a low-Reynolds number numerical model to fully capture the impact of turbulence on the fluid flow calculations. This paper provides comparisons between a number of turbulence models with experimental data. These models included the distance from the nearest wall and the local velocity (LVEL), Wolfshtein, Norris and Reynolds, k-ε, k-ω, shear-stress transport (SST), and kε/kl models. Results show that in terms of the fluid flow calculations most of the models capture the difficult wake recirculation region behind the package reasonably well, although for packages whose heights cause a high degree of recirculation behind the package the SST model appears to struggle. The paper also demonstrates the sensitivity of the models to changes in the mesh density; this study is aimed specifically at thermal design engineers as mesh independent simulations are rarely conducted in an industrial environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the use of the acoustic emission (AE) monitoring technique for use in identifying the damage mechanisms present in paper associated with its production process. The microscopic structure of paper consists of a random mesh of paper fibres connected by hydrogen bonds. This implies the existence of two damage mechanisms, the failure of a fibre-fibre bond and the failure of a fibre. This paper describes a hybrid mathematical model which couples the mechanics of the mass-spring model to the acoustic wave propagation model for use in generating the acoustic signal emitted by complex structures of paper fibres under strain. The derivation of the mass-spring model can be found in [1,2], with details of the acoustic wave equation found in [3,4]. The numerical implementation of the vibro-acoustic model is discussed in detail with particular emphasis on the damping present in the numerical model. The hybrid model uses an implicit solver which intrinsically introduces artificial damping to the solution. The artificial damping is shown to affect the frequency response of the mass-spring model, therefore certain restrictions on the simulation time step must be enforced so that the model produces physically accurate results. The hybrid mathematical model is used to simulate small fibre networks to provide information on the acoustic response of each damage mechanism. The simulated AEs are then analysed using a continuous wavelet transform (CWT), described in [5], which provides a two dimensional time-frequency representation of the signal. The AEs from the two damage mechanisms show different characteristics in the CWT so that it is possible to define a fibre-fibre bond failure by the criteria listed below. The dominant frequency components of the AE must be at approximately 250 kHz or 750 kHz. The strongest frequency component may be at either approximately 250 kHz or 750 kHz. The duration of the frequency component at approximately 250 kHz is longer than that of the frequency component at approximately 750 kHz. Similarly, the criteria for identifying a fibre failure are given below. The dominant frequency component of the AE must be greater than 800 kHz. The duration of the dominant frequency component must be less than 5.00E-06 seconds. The dominant frequency component must be present at the front of the AE. Essentially, the failure of a fibre-fibre bond produces a low frequency wave and the failure of a fibre produces a high frequency pulse. Using this theoretical criteria, it is now possible to train an intelligent classifier such as the Self-Organising Map (SOM) [6] using the experimental data. First certain features must be extracted from the CWTs of the AEs for use in training the SOM. For this work, each CWT is divided into 200 windows of 5E-06s in duration covering a 100 kHz frequency range. The power ratio for each windows is then calculated and used as a feature. Having extracted the features from the AEs, the SOM can now be trained, but care is required so that the both damage mechanisms are adequately represented in the training set. This is an issue with paper as the failure of the fibre-fibre bonds is the prevalent damage mechanism. Once a suitable training set is found, the SOM can be trained and its performance analysed. For the SOM described in this work, there is a good chance that it will correctly classify the experimental AEs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses the reliability of power electronics modules. The approach taken combines numerical modeling techniques with experimentation and accelerated testing to identify failure modes and mechanisms for the power module structure and most importantly the root cause of a potential failure. The paper details results for two types of failure (i) wire bond fatigue and (ii) substrate delamination. Finite element method modeling techniques have been used to predict the stress distribution within the module structures. A response surface optimisation approach has been employed to enable the optimal design and parameter sensitivity to be determined. The response surface is used by a Monte Carlo method to determine the effects of uncertainty in the design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper the reliability of the isolation substrate and chip mountdown solder interconnect of power modules under thermal-mechanical loading has been analysed using a numerical modelling approach. The damage indicators such as the peel stress and the accumulated plastic work density in solder interconnect are calculated for a range of geometrical design parameters, and the effects of these parameters on the reliability are studied by using a combination of the finite element analysis (FEA) method and optimisation techniques. The sensitivities of the reliability of the isolation substrate and solder interconnect to the changes of the design parameters are obtained and optimal designs are studied using response surface approximation and gradient optimization method

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A numerical modeling method for the prediction of the lifetime of solder joints of relatively large solder area under cyclic thermal-mechanical loading conditions has been developed. The method is based on the Miner's linear damage accumulation rule and the properties of the accumulated plastic strain in front of the crack in large area solder joint. The nonlinear distribution of the damage indicator in the solder joints have been taken into account. The method has been used to calculate the lifetime of the solder interconnect in a power module under mixed cyclic loading conditions found in railway traction control applications. The results show that the solder thickness is a parameter that has a strong influence on the damage and therefore the lifetime of the solder joint while the substrate width and the thickness of the baseplate are much less important for the lifetime

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electric car, the all electric aircraft and requirements for renewable energy are examples of potential technologies needed to address the world problem of global warming/carbon emission etc. Power electronics and packaged modules are fundamental for the underpinning of these technologies and with the diverse requirements for electrical configurations and the range of environmental conditions, time to market is paramount for module manufacturers and systems designers alike. This paper details some of the results from a major UK project into the reliability of power electronic modules using physics of failure techniques. This paper presents a design methodology together with results that demonstrate enhanced product design with improved reliability, performance and value within acceptable time scales

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses the reliability of an IGBT power electronics module. This work is part of a major UK funded initiative into the design, packaging and reliability of power electronic modules. The predictive methodology combines numerical modeling techniques with experimentation and accelerated testing to identify failure modes and mechanisms for these type of power electronic module structures. The paper details results for solder joint failure substrate solder. Finite element method modeling techniques have been used to predict the stress and strain distribution within the module structures. Together with accelerated life testing, these results have provided a failure model for these joints which has been used to predict reliability of a rail traction application

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the growth in computing power, and advances in numerical methods for the solution of partial differential equations, modeling technologies based around computational fluid dynamics, finite element analysis and optimisation are now being widely used by researchers and industry. Polymer and adhesive materials are now being widely used in electronic and photonic devices. This paper will illustrate the use of modeling tools to predict the behaviour of these materials from product assembly to its performance and reliability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thawing of a frozen food product in a domestic microwave oven is numerically simulated using a coupled solver approach. The approach consists of a dedicated electromagnetic FDTD solver and a closely coupled UFVM multi-physics package. Two overlapping numerical meshes are defined; the food material and container were meshed for heat transfer and phase change solution, whilst the microwave oven cavity and waveguide were meshed for the microwave irradiation. The two solution domains were linked using a cross-mapping routine. This approach allowed the rotation of the food load to be captured. Power densities obtained on the structured FDTD mesh were interpolated onto the UFVM mesh for each timestep/turntable position. The UFVM solver utilised the power density data to advance the temperature and phase distribution solution. The temperature-dependant dielectric and thermo-physical properties of the food load were updated prior to revising the electromagnetic solution. Changes in thermal/electric properties associated with the phase transition were fully accounted for as well as heat losses from product to cavity. Two scenarios were investigated: a centric and eccentric placement on the turntable. Developing temperature fields predicted by the numerical solution are validated against experimentally obtained data. Presented results indicate the feasibility of fully coupled simulations of the microwave heating of a frozen product. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A numerical modelling method for the analysis of solder joint damage and crack propagation has been described in this paper. The method is based on the disturbed state concept. Under cyclic thermal-mechanical loading conditions, the level of damage that occurs in solder joints is assumed to be a simple monotonic scalar function of the accumulated equivalent plastic strain. The increase of damage leads to crack initiation and propagation. By tracking the evolution of the damage level in solder joints, crack propagation path and rate can be simulated using Finite Element Analysis method. The discussions are focused on issues in the implementation of the method. The technique of speeding up the simulation and the mesh dependency issues are analysed. As an example of the application of this method, crack propagation in solder joints of power electronics modules under cyclic thermal-mechanical loading conditions has been analyzed and the predicted cracked area size after 3000 loading cycles is consistent with experimental results.