5 resultados para Nuclear Magnetic Resonance

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monte Carlo calculations of the nuclear magnetic relaxation rate in a disordered metal–hydrogen system having a distribution of jump rates are reported. The calculations deal specifically with the spin-locked rotating-frame relaxation time T1ρ. The results demonstrate that the temperature variation of the rate is only weakly dependent on the distribution and it is therefore unlikely that the jump rate distribution can be extracted from relaxation measurements in which temperature is the main variable. It is shown that the alternative of measuring the relaxation rate over a wide range of spin-locking field strengths at a constant temperature can lead to an evaluation of the distribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rotating-frame nuclear magnetic relaxation rate of spins diffusing on a disordered lattice has been calculated by Monte Carlo methods. The disorder includes not only variation in the distances between neighbouring spin sites but also variation in the hopping rate associated with each site. The presence of the disorder, particularly the hopping rate disorder, causes changes in the time-dependent spin correlation functions which translate into asymmetry in the characteristic peak in the temperature dependence of the dipolar relaxation rate. The results may be used to deduce the average hopping rate from the relaxation but the effect is not sufficiently marked to enable the distribution of the hopping rates to be evaluated. The distribution, which is a measure of the degree of disorder, is the more interesting feature and it has been possible to show from the calculation that measurements of the relaxation rate as a function of the strength of the radiofrequency spin-locking magnetic field can lead to an evaluation of its width. Some experimental data on an amorphous metal - hydrogen alloy are reported which demonstrate the feasibility of this novel approach to rotating-frame relaxation in disordered materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heavy metal-bearing waste usually needs solidification/stabilization (s/s) prior to landfill to lower the leaching rate. Cement is the most adaptable binder currently available for the immobilisation of heavy metals. The selection of cements and operating parameters depends upon an understanding of chemistry of the system. This paper discusses interactions of heavy metals and cement phases in the solidification/stabilisation process. It provides a clarification of heavy metal effects on cement hydration. According to the decomposition rate of minerals, heavy metals accelerate the hydration of tricalcium silicate (C3S) and Portland cement, although they retard the precipitation of portlandite due to the reduction of pH resulted from hydrolyses of heavy metal ions. The chemical mechanism relevant to the accelerating effect of heavy metals is considered to be H+ attacks on cement phases and the precipitation of calcium heavy metal double hydroxides, which consumes calcium ions and then promotes the decomposition Of C3S. In this work, molecular models of calcium silicate hydrate gel are presented based on the examination of Si-29 solid-state magic angle spinning/nuclear magnetic resonance (MAS/NMR). This paper also reviews immobilisation mechanisms of heavy metals in hydrated cement matrices, focusing on the sorption, precipitation and chemical incorporation of cement hydration products. It is concluded that further research oil the phase development during cement hydration in the presence of heavy metals and thermodynamic modelling is needed to improve effectiveness of cement-based s/s and extend this waste management technique. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Guest-host interactions of ibuprofen tromethamine salt (Ibu.T) with native and modified cyclodextrins (CyDs) have been investigated using several techniques, namely phase solubility diagrams (PSDs), proton nuclear magnetic resonance (H-1 NMR), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffractometry (XRPD). scanning-electron microscopy (SEM) and molecular mechanics (MM). From the analysis of PSD data (A(L)-type) it is concluded that the anionic tromethamine salt of ibuprofen (pK(a) = 4.55) forms 1: 1 soluble complexes with all CyDs investigated in buffered water at pH 7.0, while the neutral form of Ibu forms an insoluble complex with beta-CyD (B-S-type) in buffered water at pH 2.0. Ibu.T has a lower tendency to complex with beta-CyD (K-11 = 58 M-1 at pH 7.0) compared with the neutral Ibu (K-11 = 4200 M (1)) in water. Complex formation of Ibu.T with beta-CyD (Delta G degrees = -20.4 kJ/mol) is enthalpy driven (Delta H degrees = -22.9 kJ/mol) and is accompanied by a small unfavorable entropy (Delta S degrees = -8.4 J/mol K) change. H-1 NMR studies and MM computations revealed that, on complexation, the hydrophobic central benzene ring of lbu.T and part of the isobutyl group reside within the beta-CyD cavity leaving the peripheral groups (carboxylate, tromethamine and methyl groups) located near the hydroxyl group networks at either rim of beta-CyD. PSD, H-1 NMR, DSC, FT-IR, XRPD, SEM and MM studies confirmed the formation of Ibu.T/beta-CyD inclusion complex in solution and the solid state. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hydration of tricalcium silicate (C(3)S) in the presence of heavy metal is very important to cement-based solidification/stabilisation (s/s) of waste. In this work, tricalcium silicate pastes and aqueous suspensions doped with nitrate salts of Zn(2+), Pb(2+), Cu(2+) and Cr(3+) were examined at different ages by X-ray powder diffraction (XRD), thermal analysis (DTA/TG) and (29)Si solid-state magic angle spinning/nuclear magnetic resonance (MAS/NMR). It was found that heavy metal doping accelerated C(3)S hydration, even though Zn(2+) doping exhibited a severe retardation effect at an early period of time of C(3)S hydration. Heavy metals retarded the precipitation of portlandite due to the reduction of pH resulted from the hydrolysis of heavy metal ions during C(3)S hydration. The contents of portlandite in the control, Cr(3+)-doped, Cu(2+)-doped, Pb(2+)-doped and Zn(2+)-doped C(3)S pastes aged 28 days were 16.7, 5.5, 5.5, 5.5, and <0.7%, respectively. Heavy metals co-precipitated with calcium as double hydroxides such as (Ca(2)Cr(OH)(7).3H(2)O, Ca(2)(OH)(4)4Cu(OH)(2).2H(2)O and CaZn(2)(OH)(6).2H(2)O). These compounds were identified as crystalline phases in heavy metal doping C(3)S suspensions and amorphous phases in heavy metal doping C(3)S pastes. (29)Si NMR data confirmed that heavy metals promoted the polymerisation of C-S-H gel in 1-year-old of C(3)S pastes. The average numbers of Si in C-S-H gel for the Zn(2+)-doped, Cu(2+)-doped, Cr(3+)-doped, control, and Pb(2+)-doped C(3)S pastes were 5.86, 5.11, 3.66, 3.62, and 3.52. And the corresponding Ca/Si ratios were 1.36, 1.41, 1.56, 1.57 and 1.56, respectively. This study also revealed that the presence of heavy metal facilitated the formation of calcium carbonate during C(3)S hydration process in the presence of carbon dioxide.