9 resultados para Non-uniform flow
em Greenwich Academic Literature Archive - UK
Resumo:
Aerodynamic generation of sound is governed by the Navier–Stokes equations while acoustic propagation in a non-uniform medium is effectively described by the linearised Euler equations. Different numerical schemes are required for the efficient solution of these two sets of equations, and therefore, coupling techniques become an essential issue. Two types of one-way coupling between the flow solver and the acoustic solver are discussed: (a) for aerodynamic sound generated at solid surfaces, and (b) in the free stream. Test results indicate how the coupling achieves the necessary accuracy so that Computational Fluid Dynamics codes can be used in aeroacoustic simulations.
Resumo:
The values of material physical properties are vital for the successful use of numerical simulations for electromagnetic processing of materials. The surface tension of materials can be determined from the experimental measurement of the surface oscillation frequency of liquid droplets. In order for this technique to be used, a positioning field is required that results in a modification to the oscillation frequency. A number of previous analytical models have been developed that mainly focus on electrically conducting droplets positioned using an A.C. electromagnetic field, but due to the turbulent flow resulting from the high electromagnetic fields required to balance gravity, reliable measurements have largely been limited to microgravity. In this work axisymmetric analytical and numerical models are developed, which allow the surface tension of a diamagnetic droplet positioned in a high DC magnetic field to be determined from the surface oscillations. In the case of D.C. levitation there is no internal electric currents with resulting Joule heating, Marangoni flow and other effects that introduce additional physics that complicates the measurement process. The analytical solution uses the linearised Navier-Stokes equations in the inviscid case. The body force from a DC field is potential, in contrast to the AC case, and it can be derived from Maxwell equations giving a solution for the magnetic field in the form of a series expansion of Legendre polynomials. The first few terms in this expansion represent a constant and gradient magnetic field valid close to the origin, which can be used to position the droplet. Initially the mathematical model is verified in microgravity conditions using a numerical model developed to solve the transient electromagnetics, fluid flow and thermodynamic equations. In the numerical model (as in experiment) the magnetic field is obtained using electrical current carrying coils, which provides the confinement force for a liquid droplet. The model incorporates free surface deformation to accurately model the oscillations that result from the interaction between the droplet and the non-uniform external magnetic field. A comparison is made between the analytical perturbation theory and the numerical pseudo spectral approximation solutions for small amplitude oscillations.
Resumo:
The effects of a constant uniform magnetic field on a growing equiaxed crystal are investigated using a 3-dimensional enthalpy based numerical model. Two cases are considered: The first case looks at unconstrained growth, where the current density is generated through the thermo-electric effect and the current circulates between the tips and roots of the dendrite, the second represents an imposed potential difference across the domain. A jump in the electrical conductivity between the liquid and solid causes the current density to be non uniform. In both cases the resulting Lorentz force drives fluid flow in the liquid phase, this in turn causes advection of the thermal and solute field altering the free energy close to the interface and changing the morphology of the dendrite. In the first case the flow field is complex comprising of many circulations, the morphological changes are modelled using a 2D model with a quasi 3D approximation. The second case is comparable to classic problems involving a constant velocity boundary.
Resumo:
The market for solder paste materials in the electronic manufacturing and assembly sector is very large and consists of material and equipment suppliers and end users. These materials are used to bond electronic components (such as flip-chip, CSP and BGA) to printed circuit boards (PCB's) across a range of dimensions where the solder interconnects can be in the order of 0.05mm to 5mm in size. The non-Newtonian flow properties exhibited by solder pastes during its manufacture and printing/deposition phases have been of practical concern to surface mount engineers and researchers for many years. The printing of paste materials through very small-sized stencil apertures is known to lead to increased stencil clogging and incomplete transfer of paste to the substrate pads. At these very narrow aperture sizes the paste rheology and particle-wall interactions become crucial for consistent paste withdrawal. These non-Newtonian effects must be understood so that the new paste formulations can be optimised for consistent printing. The focus of the study reported in this paper is the characterisation of the rheological properties of solder pastes and flux mediums, and the evaluation of the effect of these properties on the pastes' printing performance at the flip-chip assembly application level. Solder pastes are known to exhibit a thixotropic behaviour, which is recognised by the decrease in apparent viscosity of paste material with time when subjected to a constant shear rate. The proper characterisation of this time-dependent theological behaviour of solder pastes is crucial for establishing the relationships between the pastes' structure and flow behaviour; and for correlating the physical parameters with paste printing performance. In this paper, we present a number of methods which have been developed for characterising the time-dependent and non-Newtonian rheological behaviour of solder pastes and flux mediums as a function of shear rates. We also present results of the study of the rheology of the solder pastes and flux mediums using the structural kinetic modelling approach, which postulates that the network structure of solder pastes breaks down irreversibly under shear, leading to time and shear dependent changes in the flow properties. Our results show that for the solder pastes used in the study, the rate and extent of thixotropy was generally found to increase with increasing shear rate. The technique demonstrated in this study has wide utility for R&D personnel involved in new paste formulation, for implementing quality control procedures used in solder paste manufacture and packaging; and for qualifying new flip-chip assembly lines
Resumo:
The issues surrounding collision of projectiles with structures has gained a high profile since the events of 11th September 2001. In such collision problems, the projectile penetrates the stucture so that tracking the interface between one material and another becomes very complex, especially if the projectile is essentially a vessel containing a fluid, e.g. fuel load. The subsequent combustion, heat transfer and melting and re-solidification process in the structure render this a very challenging computational modelling problem. The conventional approaches to the analysis of collision processes involves a Lagrangian-Lagrangian contact driven methodology. This approach suffers from a number of disadvantages in its implementation, most of which are associated with the challenges of the contact analysis component of the calculations. This paper describes a 'two fluid' approach to high speed impact between solid structures, where the objective is to overcome the problems of penetration and re-meshing. The work has been carried out using the finite volume, unstructured mesh multi-physics code PHYSICA+, where the three dimensional fluid flow, free surface, heat transfer, combustion, melting and re-solidification algorithms are approximated using cell-centred finite volume, unstructured mesh techniques on a collocated mesh. The basic procedure is illustrated for two cases of Newtonian and non-Newtonian flow to test various of its component capabilities in the analysis of problems of industrial interest.
Resumo:
The growth behavior of intermetallic layer with or without adding 0.3 wt% Ni into the Sn-0.7Cu solder was studied during the wetting reaction on Cu-substrate and thereafter in solid-state aging condition. The Cu-solder reaction couple was prepared at 255, 275 and 295 °C for 10 s. The samples reacted at 255 °C were then isothermally aged for 2-14 days at 150 °C. The reaction species formed for the Sn-0.7Cu/Cu and Sn-0.7Cu-0.3Ni/Cu soldering systems were Cu6Sn5 and (CuNi)6Sn5, respectively. The thickness of the intermetallic compounds formed at the solder/Cu interfaces and also in the bulk of both solders increased with the increase of reaction temperature. It was found that Ni-containing Sn-0.7Cu solder exhibited lower growth of intermetallic layer during wetting and in the early stage of aging and eventually exceeded the intermetallic layer thickness of Sn-0.7Cu/Cu soldering system after 6 days of aging. As the aging time proceeds, a non-uniform intermetallic layer growth tendency was observed for the case of Sn-0.7Cu-0.3Ni solder. The growth behavior of intermetallic layer during aging for both solders followed the diffusion-controlled mechanism. The intermetallic layer growth rate constants for Sn-0.7Cu and Sn-0.7Cu-0.3Ni solders were calculated as 1.41 × 10-17 and 1.89 × 10-17 m2/s, respectively which indicated that adding 0.3 wt% Ni with Sn-0.7Cu solder contributed to the higher growth of intermetallic layer during aging. © 2006 Elsevier B.V. All rights reserved.
Resumo:
The trend towards miniaturization of electronic products leads to the need for very small sized solder joints. Therefore, there is a higher reliability risk that too large a fraction of solder joints will transform into Intermetallic Compounds (IMCs) at the solder interface. In this paper, fracture mechanics study of the IMC layer for SnPb and Pb-free solder joints was carried out using finite element numerical computer modelling method. It is assumed that only one crack is present in the IMC layer. Linear Elastic Fracture Mechanics (LEFM) approach is used for parametric study of the Stress Intensity Factors (SIF, KI and KII), at the predefined crack in the IMC layer of solder butt joint tensile sample. Contrary to intuition, it is revealed that a thicker IMC layer in fact increases the reliability of solder joint for a cracked IMC. Value of KI and KII are found to decrease with the location of the crack further away from the solder interfaces while other parameters are constant. Solder thickness and strain rate were also found to have a significant influence on the SIF values. It has been found that soft solder matrix generates non-uniform plastic deformation across the solder-IMC interface near the crack tip that is responsible to obtain higher KI and KII.
Resumo:
The electric current and the associated magnetic field in aluminium electrolysis cells create effects limiting the cell productivity and possibly cause instabilities: surface waving, ‘anode effects’, erosion of pot lining, feed material sedimentation, etc. The instructive analysis is presented via a step by step inclusion of different physical coupling factors affecting the magnetic field, electric current, velocity and wave development in the electrolysis cells. The full time dependent model couples the nonlinear turbulent fluid dynamics and the extended electromagnetic field in the cell, and the whole bus bar circuit with the ferromagnetic effects. Animated examples for the high amperage cells are presented. The theory and numerical model of the electrolysis cell is extended to the cases of variable cell bottom of aluminium layer and the variable thickness of the electrolyte due to the anode non-uniform burn-out process and the presence of the anode channels. The problem of the channel importance is well known Moreau-Evans model) for the stationary interface and the velocity field, and was validated against measurements in commercial cells, particularly with the recently published ‘benchmark’ test for the MHD models of aluminium cells [1]. The presence of electrolyte channels requires also to reconsider the previous magnetohydrodynamic instability theories and the dynamic wave development models. The results indicate the importance of a ‘sloshing’ parametrically excited MHD wave development in the aluminium production cells.
Resumo:
This paper presents an analysis of biofluid behavior in a T-shaped microchannel device and a design optimization for improved biofluid performance in terms of particle liquid separation. The biofluid is modeled with single phase shear rate non-Newtonian flow with blood property. The separation of red blood cell from plasma is evident based on biofluid distribution in the microchannels against various relevant effects and findings, including Zweifach-Fung bifurcation law, Fahraeus effect, Fahraeus-Lindqvist effect and cell free phenomenon. The modeling with the initial device shows that this T-microchannel device can separate red blood cell from plasma but the separation efficiency among different bifurcations varies largely. In accordance with the imbalanced performance, a design optimization is conducted. This includes implementing a series of simulations to investigate the effect of the lengths of the main and branch channels to biofluid behavior and searching an improved design with optimal separation performance. It is found that changing relative lengths of branch channels is effective to both uniformity of flow rate ratio among bifurcations and reduction of difference of the flow velocities between the branch channels, whereas extending the length of the main channel from bifurcation region is only effective for uniformity of flow rate ratio.