11 resultados para Non-commutative Landau problem

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temperature distributions involved in some metal-cutting or surface-milling processes may be obtained by solving a non-linear inverse problem. A two-level concept on parallelism is introduced to compute such temperature distribution. The primary level is based on a problem-partitioning concept driven by the nature and properties of the non-linear inverse problem. Such partitioning results to a coarse-grained parallel algorithm. A simplified 2-D metal-cutting process is used as an example to illustrate the concept. A secondary level exploitation of further parallel properties based on the concept of domain-data parallelism is explained and implemented using MPI. Some experiments were performed on a network of loosely coupled machines consist of SUN Sparc Classic workstations and a network of tightly coupled processors, namely the Origin 2000.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main interest in the assessment of forest species diversity for conservation purposes is in the rare species. The main problem in the tropical rain forests is that most of the species are rare. Assessment of species diversity in the tropical rain forests is therefore often concerned with estimating that which is not observed in recorded samples. Statistical methodology is therefore required to try to estimate the truncated tail of the species frequency distribution, or to estimate the asymptote of species/diversity-area curves. A Horvitz-Thompson estimator of the number of unobserved (“virtual”) species in each species intensity class is proposed. The approach allows a definition of an extended definition of diversity, ( or generalised Renyi entropy). The paper presents a case study from data collected in Jambi, Sumatra, and the “extended diversity measure” is used on the species data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper considers the problem of processing n jobs in a two-machine non-preemptive open shop to minimize the makespan, i.e., the maximum completion time. One of the machines is assumed to be non-bottleneck. It is shown that, unlike its flow shop counterpart, the problem is NP-hard in the ordinary sense. On the other hand, the problem is shown to be solvable by a dynamic programming algorithm that requires pseudopolynomial time. The latter algorithm can be converted into a fully polynomial approximation scheme that runs in time. An O(n log n) approximation algorithm is also designed whi finds a schedule with makespan at most 5/4 times the optimal value, and this bound is tight.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper deals with the determination of an optimal schedule for the so-called mixed shop problem when the makespan has to be minimized. In such a problem, some jobs have fixed machine orders (as in the job-shop), while the operations of the other jobs may be processed in arbitrary order (as in the open-shop). We prove binary NP-hardness of the preemptive problem with three machines and three jobs (two jobs have fixed machine orders and one may have an arbitrary machine order). We answer all other remaining open questions on the complexity status of mixed-shop problems with the makespan criterion by presenting different polynomial and pseudopolynomial algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this past decade finite volume (FV) methods have increasingly been used for the solution of solid mechanics problems. This contribution describes a cell vertex finite volume discretisation approach to the solution of geometrically nonlinear (GNL) problems. These problems, which may well have linear material properties, are subject to large deformation. This requires a distinct formulation, which is described in this paper together with the solution strategy for GNL problem. The competitive performance for this procedure against the conventional finite element (FE) formulation is illustrated for a three dimensional axially loaded column.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The scheduling problem of minimizing the makespan for m parallel dedicated machines under single resource constraints is considered. For different variants of the problem the complexity status is established. Heuristic algorithms employing the so-called group technology approach are presented and their worst-case behavior is examined. Finally, a polynomial time approximation scheme is presented for the problem with fixed number of machines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study a two-machine open shop scheduling problem, in which the machines are not continuously available for processing. No preemption is allowed in the processing of any operation. The objective is to minimize the makespan. We consider approximability issues of the problem with more than one non-availability intervals and present an approximation algorithm with a worst-case ratio of 4/3 for the problem with a single non-availability interval.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A vertex-based finite volume (FV) method is presented for the computational solution of quasi-static solid mechanics problems involving material non-linearity and infinitesimal strains. The problems are analysed numerically with fully unstructured meshes that consist of a variety of two- and threedimensional element types. A detailed comparison between the vertex-based FV and the standard Galerkin FE methods is provided with regard to discretization, solution accuracy and computational efficiency. For some problem classes a direct equivalence of the two methods is demonstrated, both theoretically and numerically. However, for other problems some interesting advantages and disadvantages of the FV formulation over the Galerkin FE method are highlighted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a knapsack problem to minimize a symmetric quadratic function. We demonstrate that this symmetric quadratic knapsack problem is relevant to two problems of single machine scheduling: the problem of minimizing the weighted sum of the completion times with a single machine non-availability interval under the non-resumable scenario; and the problem of minimizing the total weighted earliness and tardiness with respect to a common small due date. We develop a polynomial-time approximation algorithm that delivers a constant worst-case performance ratio for a special form of the symmetric quadratic knapsack problem. We adapt that algorithm to our scheduling problems and achieve a better performance. For the problems under consideration no fixed-ratio approximation algorithms have been previously known.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a simple approach to the so-called frame problem based on some ordinary set operations, which does not require non-monotonic reasoning. Following the notion of the situation calculus, we shall represent a state of the world as a set of fluents, where a fluent is simply a Boolean-valued property whose truth-value is dependent on the time. High-level causal laws are characterised in terms of relationships between actions and the involved world states. An effect completion axiom is imposed on each causal law, which guarantees that all the fluents that can be affected by the performance of the corresponding action are always totally governed. It is shown that, compared with other techniques, such a set operation based approach provides a simpler and more effective treatment to the frame problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this note, we consider the scheduling problem of minimizing the sum of the weighted completion times on a single machine with one non-availability interval on the machine under the non-resumable scenario. Together with a recent 2-approximation algorithm designed by Kacem [I. Kacem, Approximation algorithm for the weighted flow-time minimization on a single machine with a fixed non-availability interval, Computers & Industrial Engineering 54 (2008) 401–410], this paper is the first successful attempt to develop a constant ratio approximation algorithm for this problem. We present two approaches to designing such an algorithm. Our best algorithm guarantees a worst-case performance ratio of 2+ε. © 2008 Elsevier B.V. All rights reserved.