2 resultados para Nodal Zeros
em Greenwich Academic Literature Archive - UK
Resumo:
A new general cell-centered solution procedure based upon the conventional control or finite volume (CV or FV) approach has been developed for numerical heat transfer and fluid flow which encompasses both structured and unstructured meshes for any kind of mixed polygon cell. Unlike conventional FV methods for structured and block structured meshes and both FV and FE methods for unstructured meshes, the irregular control volume (ICV) method does not require the shape of the element or cell to be predefined because it simply exploits the concept of fluxes across cell faces. That is, the ICV method enables meshes employing mixtures of triangular, quadrilateral, and any other higher order polygonal cells to be exploited using a single solution procedure. The ICV approach otherwise preserves all the desirable features of conventional FV procedures for a structured mesh; in the current implementation, collocation of variables at cell centers is used with a Rhie and Chow interpolation (to suppress pressure oscillation in the flow field) in the context of the SIMPLE pressure correction solution procedure. In fact all other FV structured mesh-based methods may be perceived as a subset of the ICV formulation. The new ICV formulation is benchmarked using two standard computational fluid dynamics (CFD) problems i.e., the moving lid cavity and the natural convection driven cavity. Both cases were solved with a variety of structured and unstructured meshes, the latter exploiting mixed polygonal cell meshes. The polygonal mesh experiments show a higher degree of accuracy for equivalent meshes (in nodal density terms) using triangular or quadrilateral cells; these results may be interpreted in a manner similar to the CUPID scheme used in structured meshes for reducing numerical diffusion for flows with changing direction.
Resumo:
Virtual manufacturing and design assessment increasingly involve the simulation of interacting phenomena, sic. multi-physics, an activity which is very computationally intensive. This chapter describes an attempt to address the parallel issues associated with a multi-physics simulation approach based upon a range of compatible procedures operating on one mesh using a single database - the distinct physics solvers can operate separately or coupled on sub-domains of the whole geometric space. Moreover, the finite volume unstructured mesh solvers use different discretization schemes (and, particularly, different ‘nodal’ locations and control volumes). A two-level approach to the parallelization of this simulation software is described: the code is restructured into parallel form on the basis of the mesh partitioning alone, that is, without regard to the physics. However, at run time, the mesh is partitioned to achieve a load balance, by considering the load per node/element across the whole domain. The latter of course is determined by the problem specific physics at a particular location.