2 resultados para Nitrobenzene hydrogenation
em Greenwich Academic Literature Archive - UK
Resumo:
Metal powder in the range of 10-100 microns is widely employed in the production of Raney nickel type catalysts for hydrogenation reactions and hydrogen fuel cell manufacture. In this presentation we examine the modelling of powder production in a gas atomisation vessel using CFD techniques. In a fully coupled Lagrangian-Eulerian two phase scheme, liquid meal particles are tracked through the vessel following atomisation of a liquid nickel-aluminium stream. There is full momentum, heat and turbulence transport between particles and surrounding argon gas and the model predicts the position of solidification depending on particle size and undercooled condition. Maps of collision probability of particles at different stages of solidification are computed, to predict the creation of satellite defects, or to initiate solidification of undercooled droplets. The model is used to support experimental work conducted under the ESA/EU project IMPRESS.
Resumo:
Heterocycle containing nitroaromatics were reduced by Mo(CO)(6) and DBU in EtOH under microwave irradiation within 15 min. Under the same conditions, 4-fluoronitrobenzene was reduced to 4-fluoroaniline, whereas 2-chloro-1-fluoro-4-nitrobenzene afforded a mixture of 3-chloro-4-fluoroaniline and 3-chloro-4-ethoxyaniline. The extent of the competing SNAr/reduction process could be influenced by the nature of the solvent, with t-BuOH the inert solvent of choice. The latter was used as solvent for SNAr/reductions of 2-chloro-1-fluoro-4-nitrobenzene with S-nucleophiles to yield 3-chloro-4-mercaptoanilines. Crown Copyright (c) 2008 Published by Elsevier Ltd. All rights reserved.