2 resultados para Negative mass bubbles
em Greenwich Academic Literature Archive - UK
Resumo:
The CFD modelling of metals reduction processes particularly always seems to involve the interaction of liquid metals, a gas (often air) top space, liquid droplets in the top space and injection of both solid particles and gaseous bubbles into the bath. These phases all interact and exhange mass, momentum and energy. Often it is the extent to which these multi-phase phemomena can be effectively captured within the CFD model which determines whether or not a tool of genuine use to the target industry sector can constructed. In this paper we discuss these issues in the context of two problems - one involving the injection of sparging gases into a steel continuous caster and the other based on the development of a novel process for aluminium electrolysis.
Resumo:
A multi-phase framework is typically required for the CFD modelling of metals reduction processes. Such processes typically involve the interaction of liquid metals, a gas (often air) top space, liquid droplets in the top space and injection of both solid particles and gaseous bubbles into the bath. The exchange of mass, momentum and energy between the phases is fundamental to these processes. Multi-phase algorithms are complex and can be unreliable in terms of either or both convergence behaviour or in the extent to which the physics is captured. In this contribution, we discuss these multi-phase flow issues and describe an example of each of the main “single phase” approaches to modelling this class of problems (i.e., Eulerian–Lagrangian and Eulerian–Eulerian). Their utility is illustrated in the context of two problems – one involving the injection of sparging gases into a steel continuous slab caster and the other based on the development of a novel process for aluminium electrolysis. In the steel caster, the coupling of the Lagrangian tracking of the gas phase with the continuum enables the simulation of the transient motion of the metal–flux interface. The model of the electrolysis process employs a novel method for the calculation of slip velocities of oxygen bubbles, resulting from the dissolution of alumina, which allows the efficiency of the process to be predicted.