5 resultados para NP Complete
em Greenwich Academic Literature Archive - UK
Resumo:
Graph partitioning divides a graph into several pieces by cutting edges. Very effective heuristic partitioning algorithms have been developed which run in real-time, but it is unknown how good the partitions are since the problem is, in general, NP-complete. This paper reports an evolutionary search algorithm for finding benchmark partitions. Distinctive features are the transmission and modification of whole subdomains (the partitioned units) that act as genes, and the use of a multilevel heuristic algorithm to effect the crossover and mutations. Its effectiveness is demonstrated by improvements on previously established benchmarks.
Resumo:
The graph-partitioning problem is to divide a graph into several pieces so that the number of vertices in each piece is the same within some defined tolerance and the number of cut edges is minimised. Important applications of the problem arise, for example, in parallel processing where data sets need to be distributed across the memory of a parallel machine. Very effective heuristic algorithms have been developed for this problem which run in real-time, but it is not known how good the partitions are since the problem is, in general, NP-complete. This paper reports an evolutionary search algorithm for finding benchmark partitions. A distinctive feature is the use of a multilevel heuristic algorithm to provide an effective crossover. The technique is tested on several example graphs and it is demonstrated that our method can achieve extremely high quality partitions significantly better than those found by the state-of-the-art graph-partitioning packages.
Resumo:
It is shown that every connected, locally connected graph with the maximum vertex degree Δ(G)=5 and the minimum vertex degree δ(G)3 is fully cycle extendable. For Δ(G)4, all connected, locally connected graphs, including infinite ones, are explicitly described. The Hamilton Cycle problem for locally connected graphs with Δ(G)7 is shown to be NP-complete
Resumo:
This paper studies two models of two-stage processing with no-wait in process. The first model is the two-machine flow shop, and the other is the assembly model. For both models we consider the problem of minimizing the makespan, provided that the setup and removal times are separated from the processing times. Each of these scheduling problems is reduced to the Traveling Salesman Problem (TSP). We show that, in general, the assembly problem is NP-hard in the strong sense. On the other hand, the two-machine flow shop problem reduces to the Gilmore-Gomory TSP, and is solvable in polynomial time. The same holds for the assembly problem under some reasonable assumptions. Using these and existing results, we provide a complete complexity classification of the relevant two-stage no-wait scheduling models.
Resumo:
There are mainly two known approaches to the representation of temporal information in Computer Science: modal logic approaches (including tense logics and hybrid temporal logics) and predicate logic approaches (including temporal argument methods and reified temporal logics). On one hand, while tense logics, hybrid temporal logics and temporal argument methods enjoy formal theoretical foundations, their expressiveness has been criticised as not power enough for representing general temporal knowledge; on the other hand, although current reified temporal logics provide greater expressive power, most of them lack of complete and sound axiomatic theories. In this paper, we propose a new reified temporal logic with a clear syntax and semantics in terms of a sound and complete axiomatic formalism which retains all the expressive power of the approach of temporal reification.