12 resultados para NONLINEAR BOUNDARY-CONDITIONS
em Greenwich Academic Literature Archive - UK
Resumo:
A monotone scheme for finite volume simulation of magnetohydrodynamic internal flows at high Hartmann number is presented. The numerical stability is analysed with respect to the electromagnetic force. Standard central finite differences applied to finite volumes can only be numerically stable if the vector products involved in this force are computed with a scheme using a fully staggered grid. The electromagnetic quantities (electric currents and electric potential) must be shifted by half the grid size from the mechanical ones (velocity and pressure). An integral treatment of the boundary layers is used in conjunction with boundary conditions for electrically conducting walls. The simulations are performed with inhomogeneous electrical conductivities of the walls and reach high Hartmann numbers in three-dimensional simulations, even though a non-adaptive grid is used.
Resumo:
As part of a comprehensive effort to predict the development of caking in granular materials, a mathematical model is introduced to model simultaneous heat and moisture transfer with phase change in porous media when undergoing temperature oscillations/cycling. The resulting model partial differential equations were solved using finite-volume procedures in the context of the PHYSICA framework and then applied to the analysis of sugar in storage. The influence of temperature on absorption/desorption and diffusion coefficients is coupled into the transport equations. The temperature profile, the depth of penetration of the temperature oscillation into the bulk solid, and the solids moisture content distribution were first calculated, and these proved to be in good agreement with experimental data. Then, the influence of temperature oscillation on absolute humidity, moisture concentration, and moisture migration for different parameters and boundary conditions was examined. As expected, the results show that moisture near boundary regions responds faster than farther away from them with surface temperature changes. The moisture absorption and desorption in materials occurs mainly near boundary regions (where interactions with the environment are more pronounced). Small amounts of solids moisture content, driven by both temperature and vapour concentration gradients, migrate between boundary and center with oscillating temperature.
Resumo:
In this paper a computer simulation tool capable of modelling multi-physics processes in complex geometry has been developed and applied to the casting process. The quest for high-quality complex casting components demanded by the aerospace and automobile industries, requires more precise numerical modelling techniques and one that need to be generic and modular in its approach to modelling multi-processes problems. For such a computer model to be successful in shape casting, the complete casting process needs to be addressed, the major events being:-• Filling of hot liquid metal into a cavity mould • Solidification and latent heat evolution of liquid metal • Convection currents generated in liquid metal by thermal gradients • Deformation of cast and stress development in solidified metal • Macroscopic porosity formation The above phenomena combines the analysis of fluid flow, heat transfer, change of phase and thermal stress development. None of these events can be treated in isolation as they inexorably interact with each other in a complex way. Also conditions such as design of running system, location of feeders and chills, moulding materials and types of boundary conditions can all affect on the final cast quality and must be appropriately represented in the model.
Resumo:
We present here a decoupling technique to tackle the entanglement of the nonlinear boundary condition and the movement of the char/virgin front for a thermal pyrolysis model for charring materials. Standard numerical techniques to solve moving front problems — often referred to as Stefan problems — encounter difficulties when dealing with nonlinear boundaries. While special integral methods have been developed to solve this problem, they suffer from several limitations which the technique described here overcomes. The newly developed technique is compared with the exact analytical solutions for some simple ideal situations which demonstrate that the numerical method is capable of producing accurate numerical solutions. The pyrolysis model is also used to simulate the mass loss process from a white pine sample exposed to a constant radiative flux in a nitrogen atmosphere. Comparison with experimental results demonstrates that the predictions of mass loss rates and temperature profile within the solid material are in good agreement with the experiment.
Resumo:
An integrated fire spread model is presented in this study including several sub-models representing different phenomena of gaseous and solid combustion. The integrated model comprises of the following sub-models: a gaseous combustion model, a thermal radiation model that includes the effects of soot, and a pyrolysis model for charring combustible solids. The interaction of the gaseous and solid phases are linked together through the boundary conditions of the governing equations for the flow domain and the solid region respectively. The integrated model is used to simulate a fire spread experiment conducted in a half-scale test compartment. Good qualitative and reasonable quantitative agreement is achieved between the experiment and numerical predictions.
Resumo:
The last few years have seen a substantial increase in the geometric complexity for 3D flow simulation. In this paper we describe the challenges in generating computation grids for 3D aerospace configuations and demonstrate the progress made to eventually achieve a push button technology for CAD to visualized flow. Special emphasis is given to the interfacing from the grid generator to the flow solver by semi-automatic generation of boundary conditions during the grid generation process. In this regard, once a grid has been generated, push button technology of most commercial flow solvers has been achieved. This will be demonstrated by the ad hoc simulation for the Hopper configuration.
Resumo:
We consider the problem of finding the heat distribution and the shape of the liquid fraction during laser welding of a thick steel plate using the finite volume CFD package PHYSICA. Since the shape of the keyhole is not known in advance, the following two-step approach to handling this problem has been employed. In the first stage, we determine the geometry of the keyhole for the steady-state case and form an appropriate mesh that includes both the workpiece and the keyhole. In the second stage, we impose the boundary conditions by assigning temperature to the walls of the keyhole and find the heat distribution and the shape of the liquid fraction for a given welding speed and material properties. We construct a fairly accurate approximation of the keyhole as a sequence of include sliced cones. A formula for finding the initial radius of the keyhole is derived by determining the radius of the vaporisation isotherm for the line heat source. We report on the results of a series of computational experiments for various heat input values and welding velocities.
Resumo:
In this paper, the continuous casting process for steel slab production is modelled using a mult-physics approach. For this purpose, a Finite Volume (FV) numerical model was constructed in 3D, with the following characteristics: Time dependent, turbulent fluid flow and heat transfer in the molten steel and flux regions, solidification of the skin layer, under prescribed heat loss boundary conditions, particle tracking simulation of argon bubbles injected with the metal into the mould, full coupling between bubbles and liquid through buoyancy and interfacial forces using a novel gas accumulation technique, and a full transient simulation of flux-metal interface behaviour under the influence of gravity and fluid inertial forces and bubble plume buoyancy. The unstructure mesh FV code PHYSICA developed at Greenwich was used for carry out the simulations with physical process data and properties supplied by IRSID SA.
Resumo:
Computational modelling of dynamic fluid–structure interaction (DFSI) is a considerable challenge. Our approach to this class of problems involves the use of a single software framework for all the phenomena involved, employing finite volume methods on unstructured meshes in three dimensions. This method enables time and space accurate calculations in a consistent manner. One key application of DFSI simulation is the analysis of the onset of flutter in aircraft wings, where the work of Yates et al. [Measured and Calculated Subsonic and Transonic Flutter Characteristics of a 45° degree Sweptback Wing Planform in Air and Freon-12 in the Langley Transonic Dynamic Tunnel. NASA Technical Note D-1616, 1963] on the AGARD 445.6 wing planform still provides the most comprehensive benchmark data available. This paper presents the results of a significant effort to model the onset of flutter for the AGARD 445.6 wing planform geometry. A series of key issues needs to be addressed for this computational approach. • The advantage of using a single mesh, in order to eliminate numerical problems when applying boundary conditions at the fluid-structure interface, is counteracted by the challenge of generating a suitably high quality mesh in both the fluid and structural domains. • The computational effort for this DFSI procedure, in terms of run time and memory requirements, is very significant. Practical simulations require even finer meshes and shorter time steps, requiring parallel implementation for operation on large, high performance parallel systems. • The consistency and completeness of the AGARD data in the public domain is inadequate for use in the validation of DFSI codes when predicting the onset of flutter.
Resumo:
The Sahara desert is a significant source of particulate pollution not only to the Mediterranean region, but also to the Atlantic and beyond. In this paper, PM 10 exceedences recorded in the UK and the island of Crete are studied and their source investigated, using Lagrangian Particle Dispersion (LPD) methods. Forward and inverse simulations identify Saharan dust storms as the primary source of these episodes. The methodology used allows comparison between this primary source and other possible candidates, for example large forest fires or volcanic eruptions. Two LPD models are used in the simulations, namely the open source code FLEXPART and the proprietary code HYSPLIT. Driven by the same meteorological fields (the ECMWF MARS archive and the PSU/NCAR Mesoscale model, known as MM5) the codes produce similar, but not identical predictions. This inter-model comparison enables a critical assessment of the physical modelling assumptions employed in each code, plus the influence of boundary conditions and solution grid density. The outputs, in the form of particle concentrations evolving in time, are compared against satellite images and receptor data from multiple ground-based sites. Quantitative comparisons are good, especially in predicting the time of arrival of the dust plume in a particular location.
Resumo:
The uptake and diffusion of solvents across polymer membranes is important in controlled drug delivery, effects on drug uptake into, for example, infusion bags and containers, as well as transport across protective clothing. Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy has been used to monitor the effects of different solvents on the diffusion of a model compound, 4-cyanophenol (CNP) across silicone membrane and on the equilibrium concentration of CNP obtained in the membrane following diffusion. ATR-FTIR spectroscopic imaging of membrane diffusion was used to gain an understanding of when the boundary conditions applied to Fick's second law, used to model the diffusion of permeants across the silicone membrane do not hold. The imaging experiments indicated that when the solvent was not taken up appreciably into the membrane, the presence of discrete solvent pools between the ATR crystal and the silicone membrane can affect the diffusion profile of the permeant. This effect is more significant if the permeant has a high solubility in the solvent. In contrast, solvents that are taken up into the membrane to a greater extent, or those where the solubility of the permeant in the vehicle is relatively low, were found to show a good fit to the diffusion model. As such these systems allow the ATR-FTIR spectroscopic approach to give mechanistic insight into how the particular solvents enhance permeation. The solubility of CNP in the solvent and the uptake of the solvent into the membrane were found to be important influences on the equilibrium concentration of the permeant obtained in the membrane following diffusion. In general, solvents which were taken up to a significant extent into the membrane and which caused the membrane to swell increased the diffusion coefficient of the permeant in the membrane though other factors such as solvent viscosity may also be important.
Resumo:
The stress singularities at the tip of a crack that terminates at a frictional interface between two layers in anisotropic composites are investigated. The order of stress singularities is determined by solving the characteristic equations obtained from the boundary conditions and the frictional interface conditions for the cases concerned. The interface is assumed to be governed by Coulomb's law of friction. Numerical results are presented for the cases with a crack terminating at a frictional interface of a fibre reinforced composite, and it is shown that there is a big difference of stress singularities between cases with and without considering friction along the interface.