3 resultados para NMR pulse sequence design
em Greenwich Academic Literature Archive - UK
Resumo:
Pulse design is investigated for time-reversal (TR) imaging as applied to ultrawideband (UWB) breast cancer detection. Earlier it has been shown that a suitably-designed UWB pulse may help to improve imaging performance for a single-tumor breast phantom with predetermined lesion properties. The current work considers the following more general and practical situations: presence of multiple malignancies with unknown tumor size and dielectric properties. Four pulse selection criteria are proposed with each focusing on one of the following aspects: eliminating signal clutter generated by tissue inhomogeneities, canceling mutual interference among tumors, improving image resolution, and suppressing artifacts created by sidelobe of the target response. By applying the proposed criteria, the shape parameters of UWB waveforms with desirable characteristics are identified through search of all the possible pulses. Simulation example using a numerical breast phantom, comprised of two tumors and structured clutter distribution, demonstrates the effectiveness of the proposed approach. Specifically, a tradeoff between the image resolution and signal-to-clutter contrast (SCC) is observed in terms of selection of the excitation waveforms.
Resumo:
Measurement of heteronuclear spin-lattice relaxation times is hampered by both low natural abundance and low detection sensitivity. Combined with typically long relaxation times, this results in extended acquisition times which often renders the experiment impractical. Recently a variant of dynamic nuclear polarisation has been demonstrated in which enhanced nuclear spin polarisation, generated in the cryo-solid state, is transferred to the liquid state for detection. Combining this approach with small flip angle pulse trains, similar to the FLASH-T(1) imaging sequence, allows the rapid determination of spin-lattice relaxation times. In this paper we explore this method and its application to the measurement of T(1) for both carbon-13 and nitrogen-15 at natural abundance. The effects of RF inhomogeneity and the influence of proton decoupling in the context of this experiment are also investigated.
Resumo:
This article distinguishes three dimensions to learning design: a technological infrastructure, a conceptual framework for practice that focuses on the creation of structured sequences of learning activities, and a way to represent and share practice through the use of mediating artefacts. Focusing initially on the second of these dimensions, the article reports the key findings from an exploratory study, eLIDA CAMEL. This project examined a hitherto under-researched aspect of learning design: what teachers who are new to the domain perceive to be its value as a framework for practice in the design of both flexible and classroom-based learning. Data collection comprised 13 case studies constructed from participants' self-reports. These suggest that providing students with a structured sequence of learning activities was the major value to teachers. The article additionally discusses the potential of such case studies to function as mediating artefacts for practitioners who are considering experimenting with learning design.