6 resultados para NETWORK MODEL
em Greenwich Academic Literature Archive - UK
Resumo:
A higher order version of the Hopfield neural network is presented which will perform a simple vector quantisation or clustering function. This model requires no penalty terms to impose constraints in the Hopfield energy, in contrast to the usual one where the energy involves only terms quadratic in the state vector. The energy function is shown to have no local minima within the unit hypercube of the state vector so the network only converges to valid final states. Optimisation trials show that the network can consistently find optimal clusterings for small, trial problems and near optimal ones for a large data set consisting of the intensity values from the digitised, grey-level image.
Resumo:
Parallel processing techniques have been used in the past to provide high performance computing resources for activities such as fire-field modelling. This has traditionally been achieved using specialized hardware and software, the expense of which would be difficult to justify for many fire engineering practices. In this article we demonstrate how typical office-based PCs attached to a Local Area Network has the potential to offer the benefits of parallel processing with minimal costs associated with the purchase of additional hardware or software. It was found that good speedups could be achieved on homogeneous networks of PCs, for example a problem composed of ~100,000 cells would run 9.3 times faster on a network of 12 800MHz PCs than on a single 800MHz PC. It was also found that a network of eight 3.2GHz Pentium 4 PCs would run 7.04 times faster than a single 3.2GHz Pentium computer. A dynamic load balancing scheme was also devised to allow the effective use of the software on heterogeneous PC networks. This scheme also ensured that the impact between the parallel processing task and other computer users on the network was minimized.
Resumo:
The main goal of a cell stability MHD model like MHD-Valdis is to help locate the busbars around the cell in a way which leads to the generation of a magnetic field inside the cell that itself leads to a stable cell operation. Yet as far as the cell stability is concerned, the uniformity of the current density in the metal pad is also extremely important and can only be achieved with a correct busbar network sizing. This work compares the usage of a detailed ANSYS based 3D thermo-electric model with the one of the versatile 1D part of MHD-Valdis to help design a well balanced busbar network.
Resumo:
Solder paste is the most important strategic bonding material used in the assembly of surface mount devices in electronic industries. It is known to exhibit a thixotropic behavior, which is recognized by the decrease in apparent viscosity of paste material with time when subjected to a constant shear rate. The proper characterization of this time-dependent rheological behavior of solder pastes is crucial for establishing the relationships between the pastes structure and flow behavior; and for correlating the physical parameters with paste printing performance. In this article, we present a novel method which has been developed for characterizing the time-dependent and non-Newtonian rheological behavior of solder pastes and flux mediums as a function of shear rates. We also present results of the study of the rheology of the solder pastes and flux mediums using the structural kinetic modeling approach, which postulates that the network structure of solder pastes breaks down irreversibly under shear, leading to time and shear-dependent changes in the flow properties. Our results show that for the solder pastes used in the study, the rate and extent of thixotropy was generally found to increase with increasing shear rate. The technique demonstrated in this study has wide utility for R&D personnel involved in new paste formulation, for implementing quality control procedures used in solder-paste manufacture and packaging; and for qualifying new flip-chip assembly lines.
Resumo:
Based on the IMP research tradition this paper regards relationships and networks as key issues in the product development and supply management agenda. Within business networks, co-development is only possible to be analysed when emphasis is placed on interdependences and interactive relationships. Co-development usually implies close relationships that allow companies to rely on each other's resources. Close relationships imply interdependences, which may improve companies' technical and product development. By looking at the actual interactions - between a UK company and its Chinese suppliers - that led to an innovative solution and a successful product launch, evolving relationship patterns are identified and analysed in a case study. Both the literature review and case study findings highlight the importance of the 'guanxi' concept (meaning interpersonal relationships in Mandarin) when analysing business-to-business networks in China. Hence, it is suggested that guanxi-based thinking and acting should be incorporated into the interaction model when considering business networking that embrace China. 'Guanxi' broadens the validity of the interaction model, in terms of geographical proximity, and deepens its theoretical base. The case study provides valuable insights for supply management under a product development context in China. In practice, the main point of interest is that Chinese suppliers are important 'resource' providers as well as 'network' providers. Hence, it is suggested that guanxi practice should be reflected into theoretical developments.
Resumo:
Drug dissolution and release characteristics from freeze-dried wafers and solvent-cast films prepared from sodium carboxymethylcellulose (CMC) have been investigated to determine the mechanisms of drug release from the two systems. The formulations were prepared by freeze-drying (wafers) or drying in air (films), the hydrated gel of the polymer containing paracetamol as a model soluble drug. Scanning electron microscopy (SEM) was used to examine differences between the physical structure of the wafers and films. Dissolution studies were performed using an exchange cell and drug release was measured by UV spectroscopy at 242 nm. The effects of drug loading, polymer content and amount of glycerol (films) on the release characteristics of paracetamol were investigated. The release profiles of paracetamol from the wafers and films were also compared. A digital camera was used to observe the times to complete hydration and dissolution of the wafers containing different amounts of CMC and how that impacts on drug release rates. Both formulations showed sustained type drug release that was modelled by the Korsmeyer–Peppas equation. Changes in the concentration of drug and glycerol (films) did not significantly alter the rate of drug release while increasing polymer content significantly decreased the rate of drug release from both formulations. The results show that the rate of paracetamol release was faster from the wafers than the corresponding films due to differences in their physical structures. The wafers which formed a porous network, hydrated faster than the more dense and continuous, (non-porous) sheet-like structure of the films.