3 resultados para NASA

em Greenwich Academic Literature Archive - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Computational modelling of dynamic fluid–structure interaction (DFSI) is a considerable challenge. Our approach to this class of problems involves the use of a single software framework for all the phenomena involved, employing finite volume methods on unstructured meshes in three dimensions. This method enables time and space accurate calculations in a consistent manner. One key application of DFSI simulation is the analysis of the onset of flutter in aircraft wings, where the work of Yates et al. [Measured and Calculated Subsonic and Transonic Flutter Characteristics of a 45° degree Sweptback Wing Planform in Air and Freon-12 in the Langley Transonic Dynamic Tunnel. NASA Technical Note D-1616, 1963] on the AGARD 445.6 wing planform still provides the most comprehensive benchmark data available. This paper presents the results of a significant effort to model the onset of flutter for the AGARD 445.6 wing planform geometry. A series of key issues needs to be addressed for this computational approach. • The advantage of using a single mesh, in order to eliminate numerical problems when applying boundary conditions at the fluid-structure interface, is counteracted by the challenge of generating a suitably high quality mesh in both the fluid and structural domains. • The computational effort for this DFSI procedure, in terms of run time and memory requirements, is very significant. Practical simulations require even finer meshes and shorter time steps, requiring parallel implementation for operation on large, high performance parallel systems. • The consistency and completeness of the AGARD data in the public domain is inadequate for use in the validation of DFSI codes when predicting the onset of flutter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This chapter discusses the code parallelization environment, where a number of tools that address the main tasks, such as code parallelization, debugging, and optimization are available. The parallelization tools include ParaWise and CAPO, which enable the near automatic parallelization of real world scientific application codes for shared and distributed memory-based parallel systems. The chapter discusses the use of ParaWise and CAPO to transform the original serial code into an equivalent parallel code that contains appropriate OpenMP directives. Additionally, as user involvement can introduce errors, a relative debugging tool (P2d2) is also available and can be used to perform near automatic relative debugging of an OpenMP program that has been parallelized either using the tools or manually. In order for these tools to be effective in parallelizing a range of applications, a high quality fully inter-procedural dependence analysis, as well as user interaction is vital to the generation of efficient parallel code and in the optimization of the backtracking and speculation process used in relative debugging. Results of parallelized NASA codes are discussed and show the benefits of using the environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Code parallelization using OpenMP for shared memory systems is relatively easier than using message passing for distributed memory systems. Despite this, it is still a challenge to use OpenMP to parallelize application codes in a way that yields effective scalable performance when executed on a shared memory parallel system. We describe an environment that will assist the programmer in the various tasks of code parallelization and this is achieved in a greatly reduced time frame and level of skill required. The parallelization environment includes a number of tools that address the main tasks of parallelism detection, OpenMP source code generation, debugging and optimization. These tools include a high quality, fully interprocedural dependence analysis with user interaction capabilities to facilitate the generation of efficient parallel code, an automatic relative debugging tool to identify erroneous user decisions in that interaction and also performance profiling to identify bottlenecks. Finally, experiences of parallelizing some NASA application codes are presented to illustrate some of the benefits of using the evolving environment.