5 resultados para Mushy Zone
em Greenwich Academic Literature Archive - UK
Resumo:
A multiscale model for the Vacuum Arc Remelting process (VAR) was developed to simulate dendritic microstructures during solidification and investigate the onset of freckle formation. On the macroscale, a 3D multi-physics model of VAR was used to study complex physical phenomena, including liquid metal flow with turbulence, heat transfer, and magnetohydrodynamics. The results showed that unsteady fluid flow in the liquid pool caused significant thermal perturbation at the solidification front. These results were coupled into a micromodel to simulate dendritic growth controlled by solute diffusion, including local remelting. The changes in Rayleigh number as the microstructure remelts was quantified to provide an indicator of when fluid flow channels (i.e. freckles) will initiate in the mushy zone. By examining the simulated microstructures, it was found that the Rayleigh number increased more than 300 times during remelting, which suggests that thermal perturbation could be responsible for the onset of freckle formation.
Resumo:
A variety of interacting complex phenomena takes place during the casting of metallic components. Here molten metal is poured into a mould cavity where it flows, cools, solidifies and then deforms in its solid state. As the metal cools, thermal gradients will promote thermal convection which will redistribute the heat around the component (usually from feeders or risers) towards the solidification front and mushy zone. Also, as the evolving solid regions of the cast component deform they will form gap at the cast-mould interface. This gap may change the rate of solidification in certain parts the casting, hence affecting the manner in which the cast component solidifies. Interaction between a cast component and its surrounding mould will also govern stress magnitudes in both the cast and mould -these may lead to defects such as cracks. This paper presents a multiphysics modelling approach to this complex process. Emphasis will be placed on the interacting phenomena taking place during the process and the modelling strategy used. Comparisons with plant data are also be given.
Resumo:
This study presents a CFD analysis constructed around PHYSICA, an open framework for multi-physics computational continuum mechanics modelling, to investigate the water movement in unsaturated porous media. The modelling environment is based on a cell-centred finite-volume discretisation technique. A number of test cases are performed in order to validate the correct implementation of Richard's equation for compressible and incompressible fluids. The pressure head form of the equation is used together with the constitutive relationships between pressure, volumetric water content and hydraulic conductivity described by Haverkamp and Van Genuchten models. The flow problems presented are associated with infiltration into initially dry soils with homogeneous or layered geologic settings. Comparison of results with the problems selected from literature shows a good agreement and validates the approach and the implementation.
Resumo:
A zone based systems design framework is described and utilised in the implementation of a message authentication code (MAC) algorithm based on symmetric key block ciphers. The resulting block cipher based MAC algorithm may be used to provide assurance of the authenticity and, hence, the integrity of binary data. Using software simulation to benchmark against the de facto cipher block chaining MAC (CBC-MAC) variant used in the TinySec security protocol for wireless sensor networks and the NIST cipher block chaining MAC standard, CMAC; we show that our zone based systems design framework can lead to block cipher based MAC constructs that point to improvements in message processing efficiency, processing throughput and processing latency.