5 resultados para Multiphase Percolation

em Greenwich Academic Literature Archive - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the load-balancing problems which arise from parallel scientific codes containing multiple computational phases, or loops over subsets of the data, which are separated by global synchronisation points. We motivate, derive and describe the implementation of an approach which we refer to as the multiphase mesh partitioning strategy to address such issues. The technique is tested on several examples of meshes, both real and artificial, containing multiple computational phases and it is demonstrated that our method can achieve high quality partitions where a standard mesh partitioning approach fails.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the load-balancing problems which arise from parallel scientific codes containing multiple computational phases, or loops over subsets of the data, which are separated by global synchronisation points. We motivate, derive and describe the implementation of an approach which we refer to as the multiphase mesh partitioning strategy to address such issues. The technique is tested on example meshes containing multiple computational phases and it is demonstrated that our method can achieve high quality partitions where a standard mesh partitioning approach fails.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract not available

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this chapter we look at JOSTLE, the multilevel graph-partitioning software package, and highlight some of the key research issues that it addresses. We first outline the core algorithms and place it in the context of the multilevel refinement paradigm. We then look at issues relating to its use as a tool for parallel processing and, in particular, partitioning in parallel. Since its first release in 1995, JOSTLE has been used for many mesh-based parallel scientific computing applications and so we also outline some enhancements such as multiphase mesh-partitioning, heterogeneous mapping and partitioning to optimise subdomain shape

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Segregation or de-blending of bulk particulates is a problem that is encountered in many industrial sectors. The magnitude of segregation can often determine whether a complete production batch can be transferred for onward processing within the plant or released to market. It is a phenomenon that impacts directly upon the profitability of a process. Segregation can occur through a coincidence of a range of variables that relate to the process and bulk particulate properties, common mechanisms for this include; percolation, surface effect (rolling) and elutriation. The importance to industry of predicting the sensitivity of bulk particulates to segregation cannot be under-estimated, and to this end various test procedures have been developed. Within many industries striving to improve product quality and reduce wastage, the determination of variability in blend consistency caused by segregation is an increasing priority. This paper considers recent work undertaken to evaluate the effects of multiple handling operations on the degree of segregation that results. The bulk properties of segregability (and resulting flowability) can not only influence the product consistency, but can have great influence over the process (production) control and performance.