3 resultados para Multiperiod mixed-integer convex model

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Of key importance to oil and gas companies is the size distribution of fields in the areas that they are drilling. Recent arguments suggest that there are many more fields yet to be discovered in mature provinces than had previously been thought because the underlying distribution is monotonic not peaked. According to this view the peaked nature of the distribution for discovered fields reflects not the underlying distribution but the effect of economic truncation. This paper contributes to the discussion by analysing up-to-date exploration and discovery data for two mature provinces using the discovery-process model, based on sampling without replacement and implicitly including economic truncation effects. The maximum likelihood estimation involved generates a high-dimensional mixed-integer nonlinear optimization problem. A highly efficient solution strategy is tested, exploiting the separable structure and handling the integer constraints by treating the problem as a masked allocation problem in dynamic programming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A mixed Lagrangian-Eulerian model of a Water Curtain barrier is presented. The heat, mass and momentum processes are modelled in a Lagrangian framework for the dispersed phase and in an Eulerian framework for the carrier phase. The derivation of the coupling source terms is illustrated with reference to a given carrier phase cell. The turbulent character of the flow is treated with a single equation model, modified to directly account for the influence of the particles on the flow. The model is implemented in the form of a 2 D incompressible Navier Stokes solver, coupled to an adaptive Rung Kutta method for the Lagrangian sub-system. Simulations of a free standing full cone water spray show satisfactory agreement with experiment. Predictions of a Water Curtain barrier impacted by a cold gas cloud point to markedly different flow fields for the upward and downward configurations, which could influence the effectiveness of chemical absorption in the liquid phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper a mixed Eulerian-Lagrangian approach for the modelling metal extrusion processes is presented. The approach involves the solution of non-Newtonian fluid flow equations in an Eulerian context, using a free-surface algorithm to track the behaviour of the workpiece and its extrusion. The solid mechanics equations associated with the tools are solved in Lagangrian context. Thermal interactions between the workpiece are modelled and a fluid-structure interaction technique is employed to model the effect of the fluid traction load imposed by the workpiece on the tools. Two extrusion test cases are investigated and the results obtained show the potential of the model with regard to representing the physics of the process and the simulation time.