2 resultados para Motor control system
em Greenwich Academic Literature Archive - UK
Resumo:
This paper proposes a vehicular control system architecture that supports self-configuration. The architecture is based on dynamic mapping of processes and services to resources to meet the challenges of future demanding use-scenarios in which systems must be flexible to exhibit context-aware behaviour and to permit customization. The architecture comprises a number of low-level services that provide the required system functionalities, which include automatic discovery and incorporation of new devices, self-optimisation to best-use the processing, storage and communication resources available, and self-diagnostics. The benefits and challenges of dynamic configuration and the automatic inclusion of users' Consumer Electronic (CE) devices are briefly discussed. The dynamic configuration and control-theoretic technologies used are described in outline and the way in which the demands of highly flexible dynamic configuration and highly robust operation are simultaneously met without compromise, is explained. A number of generic use-cases have been identified, each with several specific use-case scenarios. One generic use-case is described to provide an insight into the extent of the flexible reconfiguration facilitated by the architecture.
Resumo:
Embedded software systems in vehicles are of rapidly increasing commercial importance for the automotive industry. Current systems employ a static run-time environment; due to the difficulty and cost involved in the development of dynamic systems in a high-integrity embedded control context. A dynamic system, referring to the system configuration, would greatly increase the flexibility of the offered functionality and enable customised software configuration for individual vehicles, adding customer value through plug-and-play capability, and increased quality due to its inherent ability to adjust to changes in hardware and software. We envisage an automotive system containing a variety of components, from a multitude of organizations, not necessarily known at development time. The system dynamically adapts its configuration to suit the run-time system constraints. This paper presents our vision for future automotive control systems that will be regarded in an EU research project, referred to as DySCAS (Dynamically Self-Configuring Automotive Systems). We propose a self-configuring vehicular control system architecture, with capabilities that include automatic discovery and inclusion of new devices, self-optimisation to best-use the processing, storage and communication resources available, self-diagnostics and ultimately self-healing. Such an architecture has benefits extending to reduced development and maintenance costs, improved passenger safety and comfort, and flexible owner customisation. Specifically, this paper addresses the following issues: The state of the art of embedded software systems in vehicles, emphasising the current limitations arising from fixed run-time configurations; and the benefits and challenges of dynamic configuration, giving rise to opportunities for self-healing, self-optimisation, and the automatic inclusion of users’ Consumer Electronic (CE) devices. Our proposal for a dynamically reconfigurable automotive software system platform is outlined and a typical use-case is presented as an example to exemplify the benefits of the envisioned dynamic capabilities.