7 resultados para Modifications
em Greenwich Academic Literature Archive - UK
Resumo:
Induction Skull Melting (ISM) is a technique for heating, melting, mixing and, possibly, evaporating reactive liquid metals at high temperatures with a minimum contact at solid walls. The presented numerical modelling involves the complete time dependent process analysis based on the coupled electromagnetic, temperature and turbulent velocity fields during the melting and liquid shape changes. The simulation model is validated against measurements of liquid metal height, temperature and heat losses in a commercial size ISM furnace. The observed typical limiting temperature plateau for increasing input electrical power is explained by the turbulent convective heat losses. Various methods to increase the superheat within the liquid melt, the process energy efficiency and stability are proposed.
Resumo:
Induction Skull Melting (ISM) is used for heating, melting, mixing and, possibly, evaporating reactive liquid metals at high temperatures when a minimum contact at solid walls is required. The numerical model presented here involves the complete time dependent process analysis based on the coupled electromagnetic, temperature and turbulent velocity fields during the melting and liquid shape changes. The simulation is validated against measurements of liquid metal height, temperature and heat losses in a commercial size ISM furnace. The often observed limiting temperature plateau for ever increasing electrical power input is explained by the turbulent convective heat losses. Various methods to increase the superheat within the liquid melt, the process energy efficiency and stability are proposed.
Resumo:
In this paper, the authors present a crashworthiness assessment and suggestions for modification of a conventionally designed rail vehicle with a driving cab (cab car). The analytical approach, based on numerical analysis, consisted of two stages. Firstly, the crashworthiness of the cab car was assessed by simulating a collision between the cab car and a rigid wall. Then, after analysing structural weaknesses, the design of the cab car was modified and simulated again in the same scenario. It was found that downward bending is an intrinsic weakness in conventional rail vehicles and that jackknifing is a main form of failures in conventional rail vehicle components. The cab car, as modified by the authors, overcomes the original weaknesses and shows the desired progressive collapse behaviour in simulation. The conclusions have general relevance for other studies but more importantly, point to the need for a rethink of some aspects of rail vehicle design.
Resumo:
This paper considers the problem of minimizing the schedule length of a two-machine shop in which not only can a job be assigned any of the two possible routes, but also the processing times depend on the chosen route. This problem is known to be NP-hard. We describe a simple approximation algorithm that guarantees a worst-case performance ratio of 2. We also present some modifications to this algorithm that improve its performance and guarantee a worst-case performance ratio of 3=2.
Resumo:
On the 19 June 2001, a Thames passenger/tour boat underwent several evacuation trials. This work was conducted in order to collect data for the validation of marine-based computer models. The trials involved 111 participants who were distributed throughout the vessel. The boat had two decks and two points of exit from the lower deck placed on either side of the craft, forward and aft. The boat had a twin set of staircases towards the rear of the craft, just forward of the rear exits. maritimeEXODUS was used to simulate the full-scale evacuation trials conducted. The simulation times generated were compared against the original results and categorised according to the exit point availability. The predictions closely approximate the original results, differing by an average of 6.6% across the comparisons, with numerous qualitative similarities between the predictions and experimental results. The maritimeEXODUS evacuation model was then used to examine the evacuation procedure currently employed on the vessel. This was found to have potential to produce long evacuation times. maritimeEXODUS was used to suggest modifications to the mustering procedures. These theoretical results suggest that it is possible to significantly reduce evacuation times.
Resumo:
This paper presents a proactive approach to load sharing and describes the architecture of a scheme, Concert, based on this approach. A proactive approach is characterized by a shift of emphasis from reacting to load imbalance to avoiding its occurrence. In contrast, in a reactive load sharing scheme, activity is triggered when a processing node is either overloaded or underloaded. The main drawback of this approach is that a load imbalance is allowed to develop before costly corrective action is taken. Concert is a load sharing scheme for loosely-coupled distributed systems. Under this scheme, load and task behaviour information is collected and cached in advance of when it is needed. Concert uses Linux as a platform for development. Implemented partially in kernel space and partially in user space, it achieves transparency to users and applications whilst keeping the extent of kernel modifications to a minimum. Non-preemptive task transfers are used exclusively, motivated by lower complexity, lower overheads and faster transfers. The goal is to minimize the average response-time of tasks. Concert is compared with other schemes by considering the level of transparency it provides with respect to users, tasks and the underlying operating system.
Resumo:
A toxicity model on dividing the computational domain into two parts, a control region (CR) and a transport region (TR), for species calculation was recently developed. The model can be incorporated with either the heat source approach or the eddy dissipation model (EDM). The work described in this paper is a further application of the toxicity model with modifications of the EDM for vitiated fires. In the modified EDM, chemical reaction only occurs within the CR. This is consistent with the approach used in the species concentration calculations within the toxicity model in which yields of combustion products only change within the CR. A vitiated large room-corridor fire, in which the carbon monoxide (CM) concentrations are very high and the temperatures are relatively low at locations distant from the original fire source, is simulated using the modified EDM coupled with the toxicity model. Compared with the EDM, the modified EDM provide significant improvements in the predictions of temperatures at remote locations. Predictions of species concentrations at various locations follow the measured trends. Good agreements between the measured and predicted species concentrations are obtained at the vitiated fire stage.