8 resultados para Models and modeling
em Greenwich Academic Literature Archive - UK
Resumo:
Experiments as well as computer modeling methods have been used to investigate the effect of the solder reflow process on the electrical characteristics and reliability of anisotropic conductive film (ACF) interconnections. In the experiments, the contact resistance of the ACF interconnections was found to increase after a subsequent reflow and the magnitude of this increase was strongly correlated to the peak temperature of the reflow profile. In fact, nearly 40 percent of the joints were opened (i.e. lifted away from the pad) after the reflow with a peak temperature of 260 OC while no openings was observed when the peak temperature was 210 "C. It is believed that the CTE mismatch between the polymer particle and the adhesive matrix is the main cause of this contact degradation. To understand this phenomenon better, a 3-D model of an ACF joint structure was built and Finite Element Analysis was used to predict the stress distrihution in the conductive particles, adhesive matrix and metal pads during the reflow process. The effects of the peak temperature, the CTE of the adhesive matrix and the bump height on the reliability of the ACF interconnections were discussed.
Resumo:
In the flip-chip assembly process, no-flow underfill materials have a particular advantage over traditional underfill: the application and curing of the former can be undertaken before and during the reflow process. This advantage can be exploited to increase the flip-chip manufacturing throughput. However, adopting a no-flow underfill process may introduce reliability issues such as underfill entrapment, delamination at interfaces between underfill and other materials, and lower solder joint fatigue life. This paper presents an analysis on the assembly and the reliability of flip-chips with no-flow underfill. The methodology adopted in the work is a combination of experimental and computer-modeling methods. Two types of no-flow underfill materials have been used for the flip chips. The samples have been inspected with X-ray and scanning acoustic microscope inspection systems to find voids and other defects. Eleven samples for each type of underfill material have been subjected to thermal shock test and the number of cycles to failure for these flip chips have been found. In the computer modeling part of the work, a comprehensive parametric study has provided details on the relationship between the material properties and reliability, and on how underfill entrapment may affect the thermal–mechanical fatigue life of flip chips with no-flow underfill.
Resumo:
A major percentage of the heat emitted from electronic packages can be extracted by air cooling whether by means of natural or forced convection. This flow of air throughout an electronic system and the heat extracted is highly dependable on the nature of turbulence present in the flow field. This paper will discuss results from an investigation into the accuracy of turbulence models to predict air cooling for electronic packages and systems.
Resumo:
This work proceeds from the assumption that a European environmental information and communication system (EEICS) is already established. In the context of primary users (land-use planners, conservationists, and environmental researchers) we ask what use may be made of the EEICS for building models and tools which is of use in building decision support systems for the land-use planner. The complex task facing the next generation of environmental and forest modellers is described, and a range of relevant modelling approaches are reviewed. These include visualization and GIS; statistical tabulation and database SQL, MDA and OLAP methods. The major problem of noncomparability of the definitions and measures of forest area and timber volume is introduced and the possibility of a model-based solution is considered. The possibility of using an ambitious and challenging biogeochemical modelling approach to understanding and managing European forests sustainably is discussed. It is emphasised that all modern methodological disciplines must be brought to bear, and a heuristic hybrid modelling approach should be used so as to ensure that the benefits of practical empirical modelling approaches are utilised in addition to the scientifically well-founded and holistic ecosystem and environmental modelling. The data and information system required is likely to end up as a grid-based-framework because of the heavy use of computationally intensive model-based facilities.
Resumo:
This paper presents a continuum model of the flow of granular material during filling of a silo, using a viscoplastic constitutive relation based on the Drucker-Prager plasticity yield function. The performed simulations demonstrate the ability of the model to realistically represent complex features of granular flows during filling processes, such as heap formation and non-zero inclination angle of the bulk material-air interface. In addition, micro-mechanical parametrizations which account for particle size segregation are incorporated into the model. It is found that numerical predictions of segregation phenomena during filling of a binary granular mixture agree well with experimental results. Further numerical tests indicate the capability of the model to cope successfully with complex operations involving granular mixtures.
Resumo:
Today most of the IC and board designs are undertaken using two-dimensional graphics tools and rule checks. System-in-package is driving three-dimensional design concepts and this is posing a number of challenges for electronic design automation (EDA) software vendors. System-in-package requires three-dimensional EDA tools and design collaboration systems with appropriate manufacturing and assembly rules for these expanding technologies. Simulation and Analysis tools today focus on one aspect of the design requirement, for example, thermal, electrical or mechanical. System-in-Package requires analysis and simulation tools that can easily capture the complex three dimensional structures and provided integrated fast solutions to issues such as thermal management, reliability, electromagnetic interference, etc. This paper discusses some of the challenges faced by the design and analysis community in providing appropriate tools to engineers for System-in-Package design
Resumo:
This paper reports the investigations into the moisture induced failures in flip-chip-on-flex interconnections with anisotropic conductive films (ACF). Both experimental and modeling methods were applied. In the experiments, the contact resistance was used as a quality indicator and was measured continuously during the accelerated tests (autoclave tests). The temperature, relative humidity and the pressure were set at 121°C, 100%RH, 1atm respectively. The contact resistance of the ACF joints increased during the tests and nearly 25% of the joints were found to be open after 168 hours' testing time. Visible conduction gaps between the adhesive and substrate pads were observed. Cracks at the adhesive/flex interface were also found. It is believed that the swelling effect of the adhesive and the water penetration along the adhesive/flex interface are the main causes of this contact degradation. Another finding from the experimental work was that the ACF interconnections that had undergone the reflow treatment were more sensitive to the moisture and showed worse reliability during the tests. For a better understanding of the experimental results, 3D finite element (FE) models were built and a macro-micro modeling method was used to determine the moisture diffusion and moisture-induced stresses inside the ACF joints. Modeling results are consistent with the findings in the experimental work.
Resumo:
Many different models have been postulated over the years for sizing of feeder drives; these models have different bases, some rationally based and others more rule-of-thumb. Experience of Jenike & Johanson and likewise of The Wolfson Centre in trouble-shooting feeder drives has shown that drive powers are often poorly matched, so there is clearly still some way to go towards establishing a universally-used reliable approach. This paper presents an on-going programme of work designed to measure feeder forces experimentally on a purpose designed testing rig, and to compare these against some of the best known available models, and also against a full size installation. One aspect which is novel is the monitoring of the transition between the “filling stress field” load on the feeder and the “flowing stress field” load.