6 resultados para Model-based management
em Greenwich Academic Literature Archive - UK
Resumo:
We consider the optimum design of pilot-symbol-assisted modulation (PSAM) schemes with feedback. The received signal is periodically fed back to the transmitter through a noiseless delayed link and the time-varying channel is modeled as a Gauss-Markov process. We optimize a lower bound on the channel capacity which incorporates the PSAM parameters and Kalman-based channel estimation and prediction. The parameters available for the capacity optimization are the data power adaptation strategy, pilot spacing and pilot power ratio, subject to an average power constraint. Compared to the optimized open-loop PSAM (i.e., the case where no feedback is provided from the receiver), our results show that even in the presence of feedback delay, the optimized power adaptation provides higher information rates at low signal-to-noise ratios (SNR) in medium-rate fading channels. However, in fast fading channels, even the presence of modest feedback delay dissipates the advantages of power adaptation.
Resumo:
This work proceeds from the assumption that a European environmental information and communication system (EEICS) is already established. In the context of primary users (land-use planners, conservationists, and environmental researchers) we ask what use may be made of the EEICS for building models and tools which is of use in building decision support systems for the land-use planner. The complex task facing the next generation of environmental and forest modellers is described, and a range of relevant modelling approaches are reviewed. These include visualization and GIS; statistical tabulation and database SQL, MDA and OLAP methods. The major problem of noncomparability of the definitions and measures of forest area and timber volume is introduced and the possibility of a model-based solution is considered. The possibility of using an ambitious and challenging biogeochemical modelling approach to understanding and managing European forests sustainably is discussed. It is emphasised that all modern methodological disciplines must be brought to bear, and a heuristic hybrid modelling approach should be used so as to ensure that the benefits of practical empirical modelling approaches are utilised in addition to the scientifically well-founded and holistic ecosystem and environmental modelling. The data and information system required is likely to end up as a grid-based-framework because of the heavy use of computationally intensive model-based facilities.
Resumo:
Most of the air quality modelling work has been so far oriented towards deterministic simulations of ambient pollutant concentrations. This traditional approach, which is based on the use of one selected model and one data set of discrete input values, does not reflect the uncertainties due to errors in model formulation and input data. Given the complexities of urban environments and the inherent limitations of mathematical modelling, it is unlikely that a single model based on routinely available meteorological and emission data will give satisfactory short-term predictions. In this study, different methods involving the use of more than one dispersion model, in association with different emission simulation methodologies and meteorological data sets, were explored for predicting best CO and benzene estimates, and related confidence bounds. The different approaches were tested using experimental data obtained during intensive monitoring campaigns in busy street canyons in Paris, France. Three relative simple dispersion models (STREET, OSPM and AEOLIUS) that are likely to be used for regulatory purposes were selected for this application. A sensitivity analysis was conducted in order to identify internal model parameters that might significantly affect results. Finally, a probabilistic methodology for assessing urban air quality was proposed.
Resumo:
A complete model of particle impact degradation during dilute-phase pneumatic conveying is developed, which combines a degradation model, based on the experimental determination of breakage matrices, and a physical model of solids and gas flow in the pipeline. The solids flow in a straight pipe element is represented by a model consisting of two zones: a strand-type flow zone immediately downstream of a bend, followed by a fully suspended flow region after dispersion of the strand. The breakage matrices constructed from data on 90° angle single-impact tests are shown to give a good representation of the degradation occurring in a pipe bend of 90° angle. Numerical results are presented for degradation of granulated sugar in a large scale pneumatic conveyor.
Resumo:
In terms of a general time theory which addresses time-elements as typed point-based intervals, a formal characterization of time-series and state-sequences is introduced. Based on this framework, the subsequence matching problem is specially tackled by means of being transferred into bipartite graph matching problem. Then a hybrid similarity model with high tolerance of inversion, crossover and noise is proposed for matching the corresponding bipartite graphs involving both temporal and non-temporal measurements. Experimental results on reconstructed time-series data from UCI KDD Archive demonstrate that such an approach is more effective comparing with the traditional similarity model based algorithms, promising robust techniques for lager time-series databases and real-life applications such as Content-based Video Retrieval (CBVR), etc.
Resumo:
The recognition that urban groundwater is a potentially valuable resource for potable and industrial uses due to growing pressures on perceived less polluted rural groundwater has led to a requirement to assess the groundwater contamination risk in urban areas from industrial contaminants such as chlorinated solvents. The development of a probabilistic risk based management tool that predicts groundwater quality at potential new urban boreholes is beneficial in determining the best sites for future resource development. The Borehole Optimisation System (BOS) is a custom Geographic Information System (GIs) application that has been developed with the objective of identifying the optimum locations for new abstraction boreholes. BOS can be applied to any aquifer subject to variable contamination risk. The system is described in more detail by Tait et al. [Tait, N.G., Davison, J.J., Whittaker, J.J., Lehame, S.A. Lerner, D.N., 2004a. Borehole Optimisation System (BOS) - a GIs based risk analysis tool for optimising the use of urban groundwater. Environmental Modelling and Software 19, 1111-1124]. This paper applies the BOS model to an urban Permo-Triassic Sandstone aquifer in the city centre of Nottingham, UK. The risk of pollution in potential new boreholes from the industrial chlorinated solvent tetrachloroethene (PCE) was assessed for this region. The risk model was validated against contaminant concentrations from 6 actual field boreholes within the study area. In these studies the model generally underestimated contaminant concentrations. A sensitivity analysis showed that the most responsive model parameters were recharge, effective porosity and contaminant degradation rate. Multiple simulations were undertaken across the study area in order to create surface maps indicating areas of low PCE concentrations, thus indicating the best locations to place new boreholes. Results indicate that northeastern, eastern and central regions have the lowest potential PCE concentrations in abstraction groundwater and therefore are the best sites for locating new boreholes. These locations coincide with aquifer areas that are confined by low permeability Mercia Mudstone deposits. Conversely southern and northwestern areas are unconfined and have shallower depth to groundwater. These areas have the highest potential PCE concentrations. These studies demonstrate the applicability of BOS as a tool for informing decision makers on the development of urban groundwater resources. (c) 2007 Elsevier Ltd. All rights reserved.