4 resultados para Minimum-Time Control
em Greenwich Academic Literature Archive - UK
Resumo:
Predicting the reliability of newly designed products, before manufacture, is obviously highly desirable for many organisations. Understanding the impact of various design variables on reliability allows companies to optimise expenditure and release a package in minimum time. Reliability predictions originated in the early years of the electronics industry. These predictions were based on historical field data which has evolved into industrial databases and specifications such as the famous MIL-HDBK-217 standard, plus numerous others. Unfortunately the accuracy of such techniques is highly questionable especially for newly designed packages. This paper discusses the use of modelling to predict the reliability of high density flip-chip and BGA components. A number of design parameters are investigated at the assembly stage, during testing, and in-service.
Resumo:
This paper presents a description of a new agent based elevator sub-model developed as part of the buildingEXODUS software intended for both evacuation and circulation applications. A description of each component of the newly developed model is presented, including the elevator kinematics and associated pedestrian behaviour. The elevator model is then used to investigate a series of full building evacuation scenarios based on a hypothetical 50 floor building with four staircases and a population of 7,840 agents. The analysis explores the relative merits of using up to 32 elevators (arranged in four banks) and various egress strategies to evacuate the entire building population. Findings from the investigation suggest that the most efficient evacuation strategy utilises a combination of elevators and stairs to empty the building and clear the upper half of the building in minimum time. Combined stair elevator evacuation times have been shown to be as much as 50% faster than stair only evacuation times.
Resumo:
In this paper, a knowledge-based approach is proposed for the management of temporal information in process control. A common-sense theory of temporal constraints over processes/events, allowing relative temporal knowledge, is employed here as the temporal basis for the system. This theory supports duration reasoning and consistency checking, and accepts relative temporal knowledge which is in a form normally used by human operators. An architecture for process control is proposed which centres on an historical database consisting of events and processes, together with the qualitative temporal relationships between their occurrences. The dynamics of the system is expressed by means of three types of rule: database updating rules, process control rules, and data deletion rules. An example is provided in the form of a life scheduler, to illustrate the database and the rule sets. The example demonstrates the transitions of the database over time, and identifies the procedure in terms of a state transition model for the application. The dividing instant problem for logical inference is discussed with reference to this process control example, and it is shown how the temporal theory employed can be used to deal with the problem.
Resumo:
This paper considers a Markovian bulk-arriving queue modified to allow both mass arrivals when the queue is idle and mass departures which allow for the possibility of removing the entire workload. Properties of queues which terminate when the server becomes idle are developed first, since these play a key role in later developments. Results for the case of mass arrivals, but no mass annihilation, are then constructed with specific attention being paid to recurrence properties, equilibrium queue-size structure, and waiting-time distribution. A closed-form expression for the expected queue size and its Laplace transform are also established. All of these results are then generalised to allow for the removal of the entire workload, with closed-form expressions being developed for the equilibrium size and waiting-time distributions.