2 resultados para Minimal-model
em Greenwich Academic Literature Archive - UK
Resumo:
Parallel processing techniques have been used in the past to provide high performance computing resources for activities such as fire-field modelling. This has traditionally been achieved using specialized hardware and software, the expense of which would be difficult to justify for many fire engineering practices. In this article we demonstrate how typical office-based PCs attached to a Local Area Network has the potential to offer the benefits of parallel processing with minimal costs associated with the purchase of additional hardware or software. It was found that good speedups could be achieved on homogeneous networks of PCs, for example a problem composed of ~100,000 cells would run 9.3 times faster on a network of 12 800MHz PCs than on a single 800MHz PC. It was also found that a network of eight 3.2GHz Pentium 4 PCs would run 7.04 times faster than a single 3.2GHz Pentium computer. A dynamic load balancing scheme was also devised to allow the effective use of the software on heterogeneous PC networks. This scheme also ensured that the impact between the parallel processing task and other computer users on the network was minimized.
Resumo:
Purpose – A small size cold crucible offers possibilities for melting various electrically conducting materials with a minimal wall contact. Such small samples can be used for express contamination analysis, preparing limited amounts of reactive alloys or experimental material analyses. Aims to present a model to follow the melting process. Design/methodology/approach – The presents a numerical model in which different types of axisymmetric coil configurations are analysed. Findings – The presented numerical model permits dynamically to follow the melting process, the high-frequency magnetic field distribution change, the free surface and the melting front evolution, and the associated turbulent fluid dynamics. The partially solidified skin on the contact to the cold crucible walls and bottom is dynamically predicted. The segmented crucible shape is either cylindrical, hemispherical or arbitrary shaped. Originality/value – The model presented within the paper permits the analysis of melting times, melt shapes, electrical efficiency and particle tracks.