7 resultados para Mid-rise building

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a description of a new agent based elevator sub-model developed as part of the buildingEXODUS software intended for both evacuation and circulation applications. A description of each component of the newly developed model is presented, including the elevator kinematics and associated pedestrian behaviour. The elevator model is then used to investigate a series of full building evacuation scenarios based on a hypothetical 50 floor building with four staircases and a population of 7,840 agents. The analysis explores the relative merits of using up to 32 elevators (arranged in four banks) and various egress strategies to evacuate the entire building population. Findings from the investigation suggest that the most efficient evacuation strategy utilises a combination of elevators and stairs to empty the building and clear the upper half of the building in minimum time. Combined stair elevator evacuation times have been shown to be as much as 50% faster than stair only evacuation times.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Computer egress simulation has potential to be used in large scale incidents to provide live advice to incident commanders. While there are many considerations which must be taken into account when applying such models to live incidents, one of the first concerns the computational speed of simulations. No matter how important the insight provided by the simulation, numerical hindsight will not prove useful to an incident commander. Thus for this type of application to be useful, it is essential that the simulation can be run many times faster than real time. Parallel processing is a method of reducing run times for very large computational simulations by distributing the workload amongst a number of CPUs. In this paper we examine the development of a parallel version of the buildingEXODUS software. The parallel strategy implemented is based on a systematic partitioning of the problem domain onto an arbitrary number of sub-domains. Each sub-domain is computed on a separate processor and runs its own copy of the EXODUS code. The software has been designed to work on typical office based networked PCs but will also function on a Windows based cluster. Two evaluation scenarios using the parallel implementation of EXODUS are described; a large open area and a 50 story high-rise building scenario. Speed-ups of up to 3.7 are achieved using up to six computers, with high-rise building evacuation simulation achieving run times of 6.4 times faster than real time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work explores the impact of response time distributions on high-rise building evacuation. The analysis utilises response times extracted from printed accounts and interviews of evacuees from the WTC North Tower evacuation of 11 September 2001. Evacuation simulations produced using these “real” response time distributions are compared with simulations produced using instant and engineering response time distributions. Results suggest that while typical engineering approximations to the response time distribution may produce reasonable evacuation times for up to 90% of the building population, using this approach may underestimate total evacuation times by as much as 61%. These observations are applicable to situations involving large high-rise buildings in which travel times are generally expected to be greater than response times

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The September 11th 2001 impact on the World Trade Centre (WTC) resulted in one of the most significant evacuations of a high-rise building in modern times. The UK High-rise Evacuation Evaluation Database (HEED) study aimed to capture and collate the experiences and behaviours of WTC evacuees in a database, which would facilitate and encourage future research, which in turn would influence the design construction and use of safer built environments. A data elicitation tool designed for the purpose comprised a pre-interview questionnaire followed by a one-to-one interview protocol consisting of free-flow narratives and semi-structured interviews of WTC evacuees. This paper, which is one in a series dealing with issues relating to the successful evacuations of towers 1 and 2, focuses on cue recognition and response patterns within WTC1. Results are presented by vertical floor clusters and include information regarding cues experienced, activities prior and subsequent to occupants first becoming aware that something was wrong, perceived personal risk, time taken to respond and the inter-relationships between them. The results indicate differences in occupant activities across the floor clusters and suggest that these differences can be explained in terms of the perception of risk and the nature and extent of cues received by the participants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this paper is to demonstrate the potential of the EXODUS evacuation model in building environments. The latest PC/workstation version of EXODUS is described and is also applied to a large hypothetical supermarket/restaurant complex measuring 50 m x 40 m. A range of scenarios is presented where population characteristics (such as size, individual travel speeds, and individual response times), and enclosure configuration characteristics (such as number of exits, size of exits, and opening times of exits) are varied. The results demonstrate a wide range of occupant behavior including overtaking, queuing, redirection, and conflict avoidance. Evacuation performance is measured by a number of model predicted parameters including individual exit flow rates, overall evacuation flow rates, total evacuation time, average evacuation time per occupant, average travel distance, and average wait time. The simulations highlight the profound impact that variations in individual travel speeds and occupant response times have in determining the overall evacuation performance. 1. Jin, T., and Yamada T., "Experimental Study of Human Behavior in Smoke Filled Corridors," Proceedings of The Second International Symposium on Fire Safety Science, 1988, pp. 511-519. 2. Galea, E.R., and Galparsoro, J.M.P., "EXODUS: An Evacuation Model for Mass Transport Vehicles," UK CAA Paper 93006 ISBN 086039 543X, CAA London, 1993. 3. Galea, E.R., and Galparsoro, J.M.P., "A Computer Based Simulation Model for the Prediction of Evacuation from Mass Transport Vehicles," Fire Safety Journal, Vol. 22, 1994, pp. 341-366. 4. Galea, E.R., Owen, M., and Lawrence, P., "Computer Modeling of Human Be havior in Aircraft Fire Accidents," to appear in the Proceedings of Combus tion Toxicology Symposium, CAMI, Oklahoma City, OK, 1995. 5. Kisko, T.M. and Francis, R.L., "EVACNET+: A Computer Program to Determine Optimal Building Evacuation Plans," Fire Safety Journal, Vol. 9, 1985, pp. 211-220. 6. Levin, B., "EXITT, A Simulation Model of Occupant Decisions and Actions in Residential Fires," Proceedings of The Second International Symposium on Fire Safety Science, 1988, pp. 561-570. 7. Fahy, R.F., "EXIT89: An Evacuation Model for High-Rise Buildings," Pro ceedings of The Third International Sym posium on Fire Safety Science, 1991, pp. 815-823. 8. Thompson, P.A., and Marchant, E.W., "A Computer Model for the Evacuation of Large Building Populations," Fire Safety Journal, Vol. 24, 1995, pp. 131-148. 9. Still, K., "New Computer System Can Predict Human Behavior Response to Building Fires," FIRE 84, 1993, pp. 40-41. 10. Ketchell, N., Cole, S.S., Webber, D.M., et.al., "The Egress Code for Human Move ment and Behavior in Emergency Evacu ations," Engineering for Crowd Safety (Smith, R.A., and Dickie, J.F., Eds.), Elsevier, 1993, pp. 361-370. 11. Takahashi, K., Tanaka, T. and Kose, S., "An Evacuation Model for Use in Fire Safety Design of Buildings," Proceedings of The Second International Symposium on Fire Safety Science, 1988, pp. 551- 560. 12. G2 Reference Manual, Version 3.0, Gensym Corporation, Cambridge, MA. 13. XVT Reference Manual, Version 3.0 XVT Software Inc., Boulder, CO. 14. Galea, E.R., "On the Field Modeling Approach to the Simulation of Enclosure Fires, Journal of Fire Protection Engineering, Vol. 1, No. 1, 1989, pp. 11-22. 15. Purser, D.A., "Toxicity Assessment of Combustion Products," SFPE Handbook of Fire Protection Engineering, National Fire Protection Association, Quincy, MA, pp. 1-200 - 1-245, 1988. 16. Hankin, B.D., and Wright, R.A., "Pas senger Flows in Subways," Operational Research Quarterly, Vol. 9, 1958, pp. 81-88. 17. HMSO, The Building Regulations 1991 - Approved Document B, section B 1 (1992 edition), HMSO publications, London, pp. 9-40. 18. Polus A., Schofer, J.L., and Ushpiz, A., "Pedestrian Flow and Level of Service," Journal of Transportation Engineering, Vol. 109, 1983, pp. 46-47. 19. Muir, H., Marrison, C., and Evans, A., "Aircraft Evacuations: the Effect of Passenger Motivation and Cabin Con figuration Adjacent to the Exit," CAA Paper 89019, ISBN 0 86039 406 9, 1989. 20. Muir, H., Private communication to appear as a CAA report, 1996.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, the representation of the merging process at the floor— stair interface is examined within a comprehensive evacuation model and trends found in experimental data are compared with model predictions. The analysis suggests that the representation of floor—stair merging within the comprehensive model appears to be consistent with trends observed within several published experiments of the merging process. In particular: (a) The floor flow rate onto the stairs decreases as the stair population density increases. (b) For a given stair population density, the floor population's flow rate onto the stairs can be maximized by connecting the floor to the landing adjacent to the incoming stair. (c) In situations where the floor is connected adjacent to the incoming stair, the merging process appears to be biased in favor of the floor population. It is further conjectured that when the floor is connected opposite the incoming stair, the merging process between the stair and floor streams is almost in balance for high stair population densities, with a slight bias in favor of the floor stream at low population densities. A key practical finding of this analysis is that the speed at which a floor can be emptied onto a stair can be enhanced simply by connecting the floor to the landing at a location adjacent to the incoming stair rather than opposite the stair. Configuring the stair in this way, while reducing the floor emptying time, results in a corresponding decrease in the descent flow rate of those already on the stairs. While this is expected to have a negligible impact on the overall time to evacuate the building, the evacuation time for those higher up in the building is extended while those on the lower flows is reduced. It is thus suggested that in high-rise buildings, floors should be connected to the landing on the opposite side to the incoming stair. Information of this type will allow engineers to better design stair—floor interfaces to meet specific design objectives.